
Materials TheoryBassman Oftelie et al. Materials Theory            (2022) 6:13 
https://doi.org/10.1186/s41313-022-00043-x

ORIGINAL ARTICLE Open Access

Constant-depth circuits for dynamic
simulations of materials on quantum
computers
Lindsay Bassman Oftelie1* , Roel Van Beeumen1, Ed Younis1, Ethan Smith2, Costin Iancu1

and Wibe A. de Jong1

*Correspondence:
lbassman@lbl.gov
1Lawrence Berkeley National Lab,
Berkeley 94720, CA, USA
Full list of author information is
available at the end of the article

Abstract
Dynamic simulation of materials is a promising application for near-term quantum
computers. Current algorithms for Hamiltonian simulation, however, produce circuits
that grow in depth with increasing simulation time, limiting feasible simulations to
short-time dynamics. Here, we present a method for generating circuits that are
constant in depth with increasing simulation time for a specific subset of
one-dimensional (1D) materials Hamiltonians, thereby enabling simulations out to
arbitrarily long times. Furthermore, by removing the effective limit on the number of
feasibly simulatable time-steps, the constant-depth circuits enable Trotter error to be
made negligibly small by allowing simulations to be broken into arbitrarily many
time-steps. For an N-spin system, the constant-depth circuit contains onlyO(N2)

CNOT gates. Such compact circuits enable us to successfully execute long-time
dynamic simulation of ubiquitous models, such as the transverse field Ising and XY
models, on current quantum hardware for systems of up to 5 qubits without the need
for complex error mitigation techniques. Aside from enabling long-time dynamic
simulations with minimal Trotter error for a specific subset of 1D Hamiltonians, our
constant-depth circuits can advance materials simulations on quantum computers
more broadly in a number of indirect ways.

Keywords: Quantum simulation, Quantum computation, Quantum circuit synthesis,
Materials simulation, Dynamic simulation

Introduction
Quantum computers are intrinsically fit for efficiently simulating quantum systems (Feyn-
man 1982; Lloyd 1996; Abrams and Lloyd 1997; Zalka 1998), making the simulation of
quantum materials a leading “killer application” for this novel technology. Near-term
quantum computers, also known as noisy intermediate-scale quantum (NISQ) comput-
ers, suffer from short qubit decoherence times and high gate error rates, making it difficult
to achieve high-fidelity results with large quantum circuits (Preskill 2018). Thus, one of
the major challenges with performing simulations on current quantum hardware is keep-
ing the circuits small enough such that their results remain distinguishable from random
noise.

© The Author(s). 2022, corrected publication 2022Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41313-022-00043-x&domain=pdf
http://orcid.org/0000-0003-3542-1553
mailto: lbassman@lbl.gov
http://creativecommons.org/licenses/by/4.0/


Bassman Oftelie et al. Materials Theory            (2022) 6:13 Page 2 of 18

This is particularly challenging for dynamic simulations, which require the execution
of one circuit per time-step, where each circuit implements the time-evolution operator
from the initial time to the given time-step (Bassman Oftelie et al. 2021). Current algo-
rithms for dynamic materials simulations produce quantum circuits whose depths grow
with increasing time-step count (Wiebe et al. 2011; Childs et al. 2018). Thus, an essential
part of the workflow is quantum circuit optimization, which aims to minimize the depth
of the circuits. Already, a great deal of research has focused on general circuit optimiza-
tion (i.e. minimization) (Möttönen et al. 2004; De Vos and De Baerdemacker 2016; Iten et
al. 2016; Martinez et al. 2016; Khatri et al. 2019; Murali et al. 2019; Younis et al. 2021; Cin-
cio et al. 2020), which is an NP-hard problem (Botea et al. 2018; Herr et al. 2017). More
recently, domain-specific circuit optimizers, which focus on optimizing certain types of
circuits for specific applications, have been suggested (Bassman Oftelie et al. 2020) as a
method to reduce to complexity of this optimization problem.
According to the “no-fast-forwarding theorem”, simulating the dynamics of a system

under a generic Hamiltonian H for a time t requires �(t) gates (Berry et al. 2007;
Childs and Kothari 2010), implying that circuit depths grow at least linearly with the
number of time-steps. It has been shown, however, that quadratic Hamiltonians can be
fast-forwarded, meaning the evolution of the systems under such Hamiltonians can be
simulated with circuits whose depths do not grow significantly with the simulation time
(Atia and Aharonov 2017; Gu et al. 2021). A recent work took advantage of this to vari-
ationally compile approximate circuits with a hybrid classical-quantum algorithm for
fast-forwarded simulations (Cîrstoiu et al. 2020). The circuits, however, are approximate,
with error that grows with increasing fast-forwarding time.
Here, we present an algorithm for generating quantum circuits that are constant in

depth with increasing time-step count for simulations of materials governed by a specific
set of models derived from the one-dimensional (1D) Heisenberg Hamiltonian, which we
denote asHCD and define in Theoretical background section. This setHCD , whose most
prominent models include the transverse field Ising model (TFIM) and the (transverse
field) XY model, is characterized by Hamiltonians that can be mapped to free fermionic
models. While such models are known to be classically simulatable with polynomial
resources (Valiant 2002; Terhal and DiVincenzo 2002), our constant-depth circuits can
nonetheless help advance current research into materials simulations on near-term quan-
tum computers. This is illustrated by the ubiquity of these models in current research on
near-term quantum computers (Zhukov et al. 2018; Lamm and Lawrence 2018; Gustafson
et al. 2019; Zhu et al. 2020; BassmanOftelie et al. 2020; Yeter-Aydeniz et al. 2021; Bassman
Oftelie et al. 2021; Sun et al. 2021; Neill et al. 2021). Indeed, systems like the TFIM are
quintessential in the study of quantum phase transitions (Suzuki et al. 2012; Gómez-Ruiz
et al. 2016; Yang et al. 2019), ergodicity (Cheraghi andMahdavifar 2020), critical behavior
(Granato 1992), as well as myriad condensed matter systems, such as ferroelectrics (Blinc
et al. 1979) and magnetic spin glasses (Wu et al. 1991). When these models are made
time-dependent, non-equilibrium effects such as dynamic phase transitions and quantum
hysteresis can be studied (Tomé and de Oliveira 1990; Acharyya and Chakrabarti 1995;
Acharyya 1998; Sides et al. 1998).
The constant-depth circuits for simulating the dynamics of models in HCD are com-

prised of two-qubit gates, known as matchgates (Valiant 2002). While generic two-qubit
gates decompose into native-gate circuits with at most three CNOT gates (Vidal and
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Dawson 2004), the matchgates in our constant-depth circuits only require two CNOT
gates in their decomposition. This special property allows us to introduce a set of con-
jectured matchgate identities, which enable the downfolding of our circuits for dynamic
simulations into constant-depth for any number of time-steps.
The circuits have a fixed structure, with only the single-qubit rotation angles changing

with the addition of more time-steps. The structure has a regular pattern which can be
easily extrapolated to build circuits for any system size; for an N-spin system, the circuit
structure contains only N(N − 1) CNOT gates. Furthermore, the circuits are exact up
to Trotter error, which we argue, can be practically eliminated. This is because Trotter
error scales with the size of the simulation time-step, and the constant-depth nature of the
circuits allows for a simulation to be feasibly broken into arbitrarily many (i.e., arbitrarily
small) time-steps. For a given system size, if the constant-depth circuit is small enough
to achieve high-fidelity results on a NISQ computer, the dynamics of that system can be
successfully simulated out to arbitrarily long times and with arbitarily small Trotter error.

Theoretical background
The quantum circuits for dynamic simulations of quantummaterials must implement the
time-evolution operator between the initial time (which we set to 0) and some final time
t, given by

U(0, t) ≡ U(t) = T exp(−i
∫ t

0
H(t)dt) (1)

where T indicates a time-ordered exponential and H(t) is the time-dependent Hamil-
tonian of the material. In general, this operator is challenging to compute exactly due
to the time-dependence of the Hamiltonian and the exponentiation of the Hamiltonian.
Typically, the Trotter decomposition (Trotter 1959) is used to approximately construct
U(t). With this method, the time-dependent Hamiltonian H(t) is first approximated as a
piece-wise constant function by discretizing time into small time-steps over which H(t)
is constant (Poulin et al. 2011). Next, the Hamiltonian at each time-step is split into
components that are each individually easy to diagonalize, which enables Trotter decom-
position to be performed at each time-step. In this way, the time-evolution operator is
approximated as:

U(n�t) =
n∏

τ=1

∏
l
e−iHl(tτ )�t + O(�t) (2)

where τ multiplies over the number of discretized time-steps �t and lmultiplies over the
components into withH(t)was divided.We note that other techniques for approximating
the unitary operator exist (Childs and Wiebe 2012; Chen et al. 2021), but are rarely used
in practice at present as the circuits they produce are far too large for current hardware.
The error generated from the Trotter decomposition, known as Trotter error, can be a

significant source of error, scaling with the size of the simulation time-step �t. Dynamic
simulations based on Trotter decomposition must therefore strike a balance when select-
ing the size of �t. This is because standard algorithms for such simulations produce
circuits which grow in depth with increasing numbers of time-steps, which in turn lim-
its the number of time-steps that are feasible to simulate to just a handful (Smith et al.
2019). While decreasing �t will lower Trotter error, making �t too small will not allow
for a long enough total simulation time, since the number of time-steps is limited. Our
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constant-depth circuits, however, remove the limitation on the number of time-steps that
can be feasibly simulated, since the circuits do not get deeper with higher time-step count.
This allows for the time-step �t to be made arbitrarily small, which in turn allows one to
decrease the Trotter error to negligible values. Such practical elimination of Trotter error
with constant-depth circuits can enable far more accurate simulation results for long-time
dynamic simulations.
The constant-depth circuits we introduce here simulate the dynamical evolution of a

quantummaterial whose Hamiltonian is a simplified version of the 1DHeisenberg model,
as explained below. The Heisenberg Hamiltonian is defined as

H(t) = −
∑
α

{Jα
N−1∑
i=1

σα
i σα

i+1} − hβ(t)
N∑
i=1

σ
β
i (3)

where α sums over {x, y, z}, the coupling parameters Jα denote the exchange interaction
between nearest-neighbor spins along the α-direction, σα

i is the α-Pauli matrix acting on
qubit i, and hβ(t) is the time-dependent amplitude of an external magnetic field along
the β-direction, where β ∈ {x, y, z}. This Hamiltonian is thus defined by the set of its
parameters {Jx, Jy, Jz, hβ(t)}. We denote the set of all parameter sets asH. The full Heisen-
berg model is obtained when all parameters in the set are non-zero, however a number of
ubiquitous models can be derived by setting various parameters to zero.
Table 1 shows all subsets HCD of H for which we find that our constant-depth circuits

work. The rows of the table denote either the direction of the external magnetic field hβ or
a lack of field, while the columns label which of the coupling parameters are non-zero. The
first three columns denote parameter sets where one coupling term is non-zero, the next
three columns denote sets where two coupling terms are non-zero, while the final column
denotes the sets where all three coupling parameters are non-zero. An × appears in table
entries for parameter sets that define Hamiltonians inHCD , which can be simulated with
our constant-depth circuits. Note that Jx · Jy · Jz = 0 is a necessary but not sufficient
condition for constant-depth. We remark that all Hamiltonians inHCD can be mapped to
free fermionic models.
As all HCD Hamiltonians of Table 1 are quadratic, it is possible to fast-forward

simulations under their time-evolution (Atia and Aharonov 2017; Gu et al. 2021). In
Demonstration of constant-depth circuits section, we demonstrate simulations with our
constant-depth circuits for two important models inHCD : (i) the XYmodel, where Jz = 0
and hβ = 0, and (ii) the TFIM, where Jy = Jz = 0. Dynamics of these models have recently
been simulated on quantum computers, but lack of constant-depth circuits limited the
number of time-steps that could be successfully simulated (Smith et al. 2019).

Table 1 Subsets of Heisenberg parametersHCD for which circuits are constant-depth. The rows
denote the direction of the external field or a lack of a field. The columns denote the non-zero
coupling parameters. Table entries marked with an × denote parameter sets that represent
Hamiltonians for which our constant-depth circuits work

Jx Jy Jz Jx + Jy Jx + Jz Jy + Jz Jx + Jy + Jz

x × × × ×
y × × × ×
z × × × ×
∅ × × × × × ×
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Construction of constant-depth circuits
To arrive at the circuit structure for the constant-depth circuits, we begin by laying down
the gates that implement evolution of the system by one time-step, U(�t). Due to the
quadratic nature ofHCD Hamiltonians, which only contain coupling interactions between
nearest neighbor spins, the circuit for evolution of one time-step can be constructed by
a set of two-qubit gates which act on each of the pairs of nearest neighbor qubits. For
example, for six qubits, this circuit is given by

(4)

where each gate labeled G(�i) is a two-qubit gate defined by some set of parameters �i.
For ease of notation, the parameter set �i is dropped in subsequent labeling of these
gates, which will simply be labeled with a G. However, it must be emphasized that each
two-qubit gate has its own unique parameter set. Each additional time-step requires one
additional repetition of the circuit for one time-step. In this manner, it is possible to
construct circuits for dynamic simulations that grow with increasing numbers of time-
steps. We refer to these circuits as “growing depth circuits” for dynamic simulations. The
growing depth circuit for n time-steps for six qubits is thus given by

(5)

where there are 2n columns ofG gates for n time-steps. We now show that it is possible to
reduce the growing depth circuits for higher numbers of time-steps down to a constant-
depth circuit which is comprised of N columns of G gates for an N-spin system, where
each column alternates placing the top of the firstG gate on the first or second qubit. The
ability to “downfold” longer circuits into constant-depth circuits is derived from special
properties of these G gates.
In fact, the G gates belong to a special group of two-qubit gates known as matchgates

(Valiant 2002).

Definition 1 Let the matrices A and B be in SU(2)

A =
[
p q
r s

]
, B =

[
w x
y z

]
, (6)

with det(A) = det(B). Then the two-qubit matchgate G(A,B) is defined as follows

G(A,B) =

⎡
⎢⎢⎢⎣

p q
w x
y z

r s

⎤
⎥⎥⎥⎦ . (7)
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Matchgates have the important property that the product of two matchgates is again a
matchgate and this will be a key feature to arrive at constant-depth circuits.

Lemma 1 Let G(A1,B1) and G(A2,B2) be matchgates, then the matrix

G(A3,B3) = G(A1,B1)G(A2,B2), (8)

is again a matchgate with A3 = A1A2 and B3 = B1B2.

Proof The proof directly follows from carrying out the matrix-matrix multiplication.

A graphical representation of Lemma 1 is given by

(9)

The decomposition of a general matchgate into a native-gate circuit, which can be exe-
cuted on NISQ devices, requires three CNOT gates (Vidal and Dawson 2004). However,
all the matchgates for HCD have a special structure which allows them to be decom-
posed into native-gate circuits with only two CNOT gates. InHCD cases with an external
magnetic field along the x- or y-directions, the gates G in (4) do not have the matchgate
structure but are spectrally equivalent with a matchgate and are in fact matchgates up to
some π/2 rotations. Matchgates and their corresponding decomposition into native-gate
circuits with two-CNOTs are given for all Hamiltonians inHCD in Appendix A.
The ability to contract the circuits to constant depth relies on an identity that we

conjecture for these specialHCD matchgates.

Conjecture 1 Let G1,G2,G3 be matchgates of a certain type in HCD , then there exist
three corresponding matchgates G4,G5,G6 of the same type so that

(G1 ⊗ I)(I ⊗ G2)(G3 ⊗ I) = (I ⊗ G4)(G4 ⊗ I)(I ⊗ G6). (10)

A graphical representation of Conjecture 1 is given by

(11)

Using numerical optimization to identify circuit parameters on either side of the equality,
we empirically find this conjecture to be true for all trials where the circuits are com-
prised of HCD matchgates. It has, however, proven challenging to analytically compute
the parameters of the circuit on the right-hand side given the parameterized circuit on
the left-hand side and vice versa. As a result, compilation of our constant-depth circuits
requires numerical optimization to obtain circuit parameters. We emphasize that the
equivalence (11) only holds forHCD matchgates, whereas the equivalence (9) holds for all
matchgates.
Based on Eqs. 9 and 11 we can derive identities for higher numbers of qubits, where

a set of N columns of matchgates across N qubits can be replaced by its mirror image,
albeit with altered parameter sets for all the constituent matchgates. A demonstration of
deriving the identity for 4-qubits is shown in Appendix B. We refer to these identities as
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Fig. 1 ConjecturedHCD matchgate mirroring identities for four qubits (a) and for five qubits (b)

the matchgate mirroring identities. These conjectured identities are depicted in Fig. 1 for
four and five qubits. Note that for even numbers of qubits the mirroring is about a vertical
axis (Fig. 1a), while for odd numbers of qubits the mirroring is about a horizontal axis
(Fig. 1b). We emphasize that the matchgate parameters are different on either side of the
equality signs.
To understand how these mirroring identities allow for the construction of constant

depth circuits, we notice that for an N-qubit growing depth circuit (e.g., Eq. 5) we can
apply the matchgate mirroring identity to the lastN columns of matchgates in the circuit.
We note that applying this identity will change the parameters defining each matchgate
within the mirroring group. Application of this identity will result in pairs of adjacent
matchgates on the same qubit pairs that can be combined into one matchgate, thus reduc-
ing the number of columns of matchgates in the circuit by one. This can be repeated until
only N columns of matchgates in the circuit remain. This process is demonstrated for
six qubits in Fig. 2. Figure 2a shows the growing depth circuit for six qubits simulating n
time-steps with the last six columns of matchgates in the circuit highlighted with an out-
line. Figure 2b shows one application of the matchgate mirroring identity for six qubits to
these last six columns of matchgates. Note how after applying the identity, two pairs of
matchgates emerge adjacent to one another on the same pair of qubits, highlighted with
an outline. These pairs can each be merged into one matchgate with new parameters,
thus reducing the number of columns of matchgates in the circuit by one. This process is
repeated until only six columns of matchgates remain, as shown in Fig. 2c.
The downfolding approach presented in Fig. 2 shows how to methodically obtain

constant-depth circuits for each time-step in the dynamic simulation. In practice, how-
ever, we directly use numerical optimization to find the parameters for the constant-depth
circuit of Fig. 2c. We begin by computing the operator in Eq. 2 (either by exact diag-
onalization or Trotter decomposition), which defines our target matrix (i.e., the matrix
our circuit aims to carry out). Given a system size, we then construct the constant-
depth circuit structure, which has N columns of matchgates for an N-qubit system. Next,
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Fig. 2 Downfolding a 6-qubit circuit for n time-steps down to a constant-depth circuit. a The 6-qubit circuit
for evolving the system by n time-steps with the time-evolution operator U(n�t). A box highlights the last
six columns of matchgates to which the matchgate mirroring identity will be applied. b The 6-qubit circuit
after application of theHCD matchgate mirroring identity. Pairs of adjacent matchgates on the same qubit
pairs which can be combined into one matchgate with new parameters are highlighted with an outline. c
The final constant-depth circuit for a 6-qubit circuit, which has six columns of matchgates

we compute the matrix equivalent of the circuit, which will be compared to our target
matrix. Using numerical optimization, we then solve for the parameters of the circuit that
minimize the distance between the circuit matrix and the target matrix.
The number of circuit parameters grows quadratically with system size. This makes

scaling to larger system sizes challenging as the circuit optimization for each time-step
will take longer to compute. This could be ameliorated by finding a way to map the coef-
ficients of the Hamiltonian directly to the rotation angles in the constant-depth circuit,
whether through analytical techniques or machine learning methods. This would enable
one to skip computation of the time-evolution operator and numerical optimization alto-
gether. It should be noted, however, that the inability to remove this classical optimization
step may not completely inhibit this method because the constant-depth circuit genera-
tion is embarrassingly parallel. In other words, the circuits for each time-step may all be
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computed in parallel, as numerical optimization for one circuit does not depend on infor-
mation from any other circuit. In this way, the numerical optimization of circuits for all
time-steps for large system simulations could be executed simultaneously on a classical
supercomputer, which are regularly used for similar computations.
The circuit volume of the constant-depth circuits grows quadratically with system size

N, while the depth grows only linearly with N. We emphasize, however, that unlike pre-
vious circuit generation techniques, our circuits do not grow in size with increasing
numbers of time-steps, but rather remain fixed for a given system size N. This remark-
able feature is what enables simulation out to arbitrarily large numbers of time-steps and
thus permits long-time dynamic simulations. Most other methods for circuit generation
will produce circuits that grow linearly with increasing numbers of time-steps (Wiebe et
al. 2011; Smith et al. 2019). This prohibits dynamic simulations beyond a certain number
of time-steps due to the quantum computer encountering circuits that are too large, and
thus accumulate too much error due to gate errors and qubit decoherence.

Demonstration of constant-depth circuits
To demonstrate the power of our constant-depth circuits, we simulate quantum quenches
of 3-, 4-, and 5-spin systems defined by the TFIM and XY model on the IBM quantum
processor “ibmq_athens”. A quantum quench is simulated by initializing the system in the
ground state of an initial Hamiltonian, Hi, and then evolving the system through time
under a final Hamiltonian,Hf . Quenches can simulate a sudden change in a system’s envi-
ronment and provide insights into the non-equilibrium dynamics of various quantum
materials.
The TFIM is obtained by setting Jy = Jz = 0 and β = z in the Hamiltonian in Eq. 3.

To perform a quench with the TFIM, we assume the external magnetic field is initially
turned off, and the qubits are initialized in the ground state of an initial Hamiltonian
Hi(t < 0) = ∑

i −Jx σ x
i σ x

i+1, which is a ferromagnetic state oriented along the x-axis.
At time t = 0, a time-dependent magnetic field is instantaneously turned on, and the
system evolves under the final HamiltonianHi(t ≥ 0) = − ∑

i{Jxσ x
i σ x

i+1+hz(t)σ z
i }, which

represents the TFIM. We use parameters from Ref Bassman Oftelie et al. (2020), setting
Jx = 11.83898meV and hz(t) = 2Jx cos(ωt) with ω = 0.0048 fs−1, which simulates a
simplified model of a Re-doped mono-layer of MoSe2 under laser excitation. A time-step
of 3 fs is used in the simulations. Our observable of interest is the average magnetization
of the system along the x-axis, given bymx(t) = 1

N
∑

i〈σ x
i (t)〉.

The XY model is obtained by setting Jz = hβ = 0 in the Hamiltonian in Eq. 3. To
perform a quench with the XY model, we initially let Jz → ∞ and approximate the initial
Hamiltonian Hi(t < 0) = C

∑
i σ

z
i σ z

i+1, where C is an arbitrarily large constant. The
ground state of this Hamiltonian is the Néel state, defined as |ψ0〉 = |↑↓↑ · · · ↓〉. At
time t = 0, we instantaneously set Jz = 0, and let Jx = Jy = −1.0 eV, giving a final
Hamiltonian of Hf (t ≥ 0) = ∑

i{σ x
i σ x

i+1 + σ
y
i σ

y
i+1}, which represents the XY model. A

time-step of 0.025 fs is used in the simulations. Our observable of interest is the staggered
magnetization of the system, which is related to the antiferromagnetic order parameter
and given byms(t) = 1

N
∑

i(−1)i〈σ z
i (t)〉.

To generate the constant-depth circuits for our simulations, we rely on circuit opti-
mization software provided by the circuit synthesis toolkit BQSKit (Berkeley Quantum
Synthesis Toolkit 2021). This suite of software provides several packages which can be
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used to generate the constant-depth circuits. The user must provide the matrix repre-
sentation for the time-evolution operator to be implemented along with the parameter-
dependent constant-depth circuit structure. The circuit synthesis software then proceeds
to use numerical optimization to find the optimal parameters for the circuit. Tutorials
including the full code for generating our constant-depth circuits using the BQSKit toolkit
are included in the Supplemental Material (Bassman Oftelie et al. 2021).
Figure 3 shows the simulation results for quenches of the TFIM (top row) and XY

model (bottom row) for various system sizes performed on a real quantum processor.
The magnetization for each time-step was average over 8192 shots. In the first three
columns, the results from our constant-depth circuits (red) and growing depth circuits
(green) are compared to the expected results computed with a noise-free quantum com-
puter simulator (blue). We note that time-step size was chosen sufficiently small such
that the noise-free simulator results are in complete agreement with numerically exact
results computed with exact diagonalization, and thus serve as our “ground truth”. The
growing depth circuits were generated from standard Trotter decomposition and opti-
mized with the IBM native compiler. While some new techniques have been developed
for making shorter circuits based on Trotterization (Childs et al. 2018; Campbell 2019;
Tran et al. 2020; Kivlichan et al. 2020; Childs et al. 2021), they nonetheless still grow in
size with increasing time-step count, and thus will still generate results indistinguishable
from random noise beyond a certain time-step. For this reason, the growing depth cir-
cuits produce qualitatively consistent results for the first few time-steps, but thereafter
the circuits are too large, accumulating too much error, to produce high-fidelity results.
A recent benchmark study of dynamic simulations of similar systems on quantum com-
puters found analogous behavior, with high-fidelity results limited to only a handful of
time-steps (Smith et al. 2019). In contrast, the results from our constant-depth circuits
remain accurate for all time-step counts, and in principle, will remain so out to arbitrarily

Fig. 3 Comparison of simulation results from real quantum hardware and CNOT gate count for the TFIM and
XY model using the constant-depth circuits versus growing depth circuits generated from standard Trotter
decomposition. The top row shows simulation results for a TFIM with 3- (a), 4- (b), and 5-qubits (c). A
noise-free simulator provides the ground truth, shown in blue, with which to compare results from the
constant-depth circuits (red) and growing depth circuits (green). The bottom row shows the analogous
simulation results for the XY model with 3- (e), 4- (f), and 5-qubits (g). d and h show the number of CNOT
gates in the constant-depth (red) and growing depth (green) circuits for each time-step for 3- (dotted line), 4-
(dashed line), and 5-qubit (solid line) systems for the TFIM and XY models, respectively
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many time-steps. These results thus show the power of constant-depth circuits to enable
long-time dynamic simulations.
Figure 3d and h compare the number of CNOT gates for each time-step in the constant-

depth (red) and growing depth (green) circuits for 3- (dotted line), 4- (dashed lined), and
5-spin (solid line) systems. Clearly the number of CNOT gates remains the same for all
time-steps for our constant-depth circuits, but the number grows linearly with increasing
numbers of time-steps for the growing depth circuits. Notice how the number of CNOT
gates per time-step for the XY model circuits (3h) are approximately double the number
for the TFIM circuits (3d), while our constant-depth circuits have the same CNOT count
for both models.

Discussion and outlook
Standard Hamiltonian simulation algorithms produce circuits that grow in depth with
increasing time-step count, which limits the number of time-steps that are feasible to
simulate on near-term quantum devices. The constant-depth circuits we have presented
remove this limit when simulating a specific set of 1D Hamiltonian models, namely those
which can be mapped to free fermionic models, including the TFIM and XY model.
Simulations of these systems, therefore, can be broken into arbitrarily many time-steps,
which allows for Trotter error to be made negligibly small and enables long-time dynam-
ics to be more feasibly simulated on near-term quantum devices. While simulations of
free-fermionic systems are known to be classically simulatable with resources that scale
polynomially with system size (Valiant 2002; Terhal and DiVincenzo 2002), there are
numerous ways in which the constant-depth can indirectly contribute to progressing
dynamic simulations on materials on near-term quantum computers. For example, our
constant-depth circuits can enable preparation of non-trivial ground states ofHCD mod-
els through adiabatic state preparation (ASP). Since our compressed circuits allow for
arbitrarily many time-steps in a simulation, this allows arbitrarily slow (i.e., adiabatic) evo-
lution under a time-dependent Hamiltonian, which is the basis for ASP (Aspuru-Guzik
et al. 2005; Barends et al. 2016). In this way, our circuits might be used as an initial
state preparation sub-circuit within a larger simulation circuit. Indeed, our compressed
circuits may serve as sub-circuits in any larger circuit that contains a component with
time-evolution under one of theHCD Hamiltonians. Another example can be seen in Ref.
Bassman Oftelie et al. (2021), where a finite temperature state was prepared in an initial
part of a simulation circuit and our compressed circuit was appended to time evolve the
initial thermal state.
Other areas of utility for our compressed circuits include the benchmarking of new

errormitigation or noise extrapolation techniques (Gustafson et al. 2019; Li and Benjamin
2017), as well as the benchmarking of the performance of quantum hardware in general.
For these endeavours our constant-depth circuits can prove highly useful as they are feasi-
ble to run on near-term hardware and are classically efficiently simulatable, which allows
for the calculation of a ground truth for use in the benchmarking. Finally, future work
might also explore if and how our constant-depth circuits can be adapted for approxi-
mations of various extensions of the Hamiltonians in HCD , including two-dimensional
models, models with next-nearest neighbor or even longer-range interactions, or full
Heisenberg interactions (i.e., coupling interactions along three axes). Indeed, match-
gates have previously been studied for various two-dimensional qubit topologies and for
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longer-range interactions (Brod and Galvão 2012; Brod and Childs 2014). Paired with
incremental improvements in quantum hardware, the ability to extend our constant-
depth circuits to more complex systems could pave the way to new discoveries in the
behavior of quantum materials by enabling long-time dynamic simulations on quantum
computers of systems relevant to scientific and technological problems.

Appendix A: quantum circuits forHCD matchgates
Here, we describe the matchgates used for the various Hamiltonians in HCD in terms of
their matrix representation, as well as their quantum circuit representation. In the fol-
lowing, we use θi to represent the free parameters of the circuit that must be set by the
optimizer for a particular Hamiltonian and time-step. Rx(θ), Ry(θ), and Rz(θ) are rotation
gates, which rotate the qubit around the x-, y-, z-axis, respectively, by an angle θ . Elements
of the matchgate matrix representations in plain text are real numbers, while elements in
colored, boldface text are complex numbers. A bar over a complex element denotes its
complex conjugate.

Hamiltonian parameter subsets with: JxJy = JxJz = JyJz = 0 and hβ = 0
Matchgates used in constant-depth circuits for simulating H = jx

∑
i σ

x
i σ x

i+1

(12)

Matchgates used in constant-depth circuits for simulating H = jy
∑

i σ
y
i σ

y
i+1

(13)

Matchgates used in constant-depth circuits for simulating H = jz
∑

i σ
z
i σ z

i+1

(14)
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Hamiltonian parameter subsets with: JxJy = JxJz = JyJz = 0 and hβ �= 0
G gates used in constant-depth circuits for simulating H = jx

∑
i σ

x
i σ x

i+1 + hx
∑

i σ
x
i

(15)

G gates used in constant-depth circuits for simulating H = jy
∑

i σ
y
i σ

y
i+1 + hy

∑
i σ

y
i

(16)

Matchgates used in constant-depth circuits for simulating H = jz
∑

i σ
z
i σ z

i+1 + hz
∑

i σ
z
i

(17)

Hamiltonian parameter subsets with: JxJyJz = 0 and hβ = 0
Matchgates used in constant-depth circuits for simulating H = ∑

i jxσ
x
i σ x

i+1 + jyσ
y
i σ

y
i+1

(18)
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Matchgates used in constant-depth circuits for simulating H = ∑
i jxσ

x
i σ x

i+1 + jzσ z
i σ z

i+1

(19)

Matchgates used in constant-depth circuits for simulating H = ∑
i jyσ

y
i σ

y
i+1 + jzσ z

i σ z
i+1

(20)

Hamiltonian parameter subsets with: JxJyJz = 0 and hβ �= 0
Matchgates used in constant-depth circuits for simulating H = jx

∑
i σ

x
i σ x

i+1 + hz
∑

i σ
z
i or

H = jy
∑

i σ
y
i σ

y
i+1 + hz

∑
i σ

z
i or H = ∑

i{Jxσ x
i σ x

i+1 + jyσ
y
i σ

y
i+1} + hz

∑
i σ

z
i

G :=

⎡
⎢⎢⎢⎣

e−i(θ0+θ3) cos θ1−θ2
2 −iei(θ0−θ3) sin θ1−θ2

2
cos θ1+θ2

2 −i sin θ1+θ2
2

−i sin θ1+θ2
2 cos θ1+θ2

2
−ie−i(θ0−θ3) sin θ1−θ2

2 ei(θ0+θ3) cos θ1−θ2
2

⎤
⎥⎥⎥⎦ (21a)

(21b)

G gates used in constant-depth circuits for simulating H = jx
∑

i σ
x
i σ x

i+1 + hy
∑

i σ
y
i or

H = jz
∑

i σ
z
i σ z

i+1 + hy
∑

i σ
y
i or H = ∑

i{Jxσ x
i σ x

i+1 + jzσ z
i σ z

i+1} + hy
∑

i σ
y
i

(22a)

(22b)
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G gates used in constant-depth circuits for simulating H = jy
∑

i σ
y
i σ

y
i+1 + hx

∑
i σ

x
i or

H = jz
∑

i σ
z
i σ z

i+1 + hx
∑

i σ
x
i or H = ∑

i{Jyσ y
i σ

y
i+1 + jzσ z

i σ z
i+1} + hx

∑
i σ

x
i

(23)

Appendix B: Proof of Fig. 1a

Proof Using (11) recursively, yields

(24)

(25)

(26)

(27)

(28)

(29)
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