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USA present work, we consider a coarse-graining framework capable of re-capturing these
interactions by means of the dislocation-dislocation correlation functions. The
framework depends on a convolution length to define slip-system-specific dislocation
densities. Following a statistical definition of this coarse-graining process, we define a
spatial correlation function which will allow the arrangement of the discrete line
system at two points—and thus the strength of their interactions at short range—to
be recaptured into a mean field description of dislocation dynamics. Through a
statistical homogeneity argument, we present a method of evaluating this correlation
function from discrete dislocation dynamics simulations. Finally, results of this
evaluation are shown in the form of the correlation of dislocation densities on the same
slip-system. These correlation functions are seen to depend weakly on plastic strain,
and in turn, the dislocation density, but are seen to depend strongly on the
convolution length. Implications of these correlation functions in regard to continuum
dislocation dynamics as well as future directions of investigation are also discussed.
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Introduction
The dislocation-dislocation correlations represent an important link between the con-
tinuum and discrete descriptions of the dislocation dynamics. Many views on what this
correlation represents, how to evaluate it, and what kinetically-relevant information it
contains have been presented in recent years. The present work puts forward a clear
and robust definition of the dislocation-dislocation correlation functions and presents a
methodology for their computation using simulations of discrete dislocation systems.
One may think of correlation functions as a certain error estimate on mean field rep-
resentations of discrete systems (cf. self-consistent field theories, Hartree-type theories
of electronic systems (Hartree 1928)). Specifically in our case, the dislocation-dislocation
correlation functions represent an error estimate on mean dislocation density field the-
ories (El-Azab and Po 2018). Therefore, to even define a correlation, we must first have
some idea of what we are referring to as our mean dislocation density field. Several

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
@ Sprlnger Open which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
— credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:/creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41313-020-00026-w&domain=pdf
http://orcid.org/0000-0003-2976-0903
mailto: jpanderson@purdue.edu
http://creativecommons.org/licenses/by/4.0/

Anderson and EI-Azab Materials Theory (2021) 5:1 Page 2 of 34

descriptions have been proposed in recent years, both for the two-dimensional (2D) case
of perfectly parallel edge dislocations (Groma 1997; Groma and Balogh 1999; Valdenaire
et al. 2016), and the three-dimensional (3D) case. In three dimensions, the problem of
densities of curved dislocations has been treated by two distinct theories. One which con-
siders a single-valued vector density of dislocations at every point in space (Xia 2016)
and another higher-order theory of curved dislocations which considers many orienta-
tions of dislocations at a single point (Hochrainer 2007; Hochrainer et al. 2014; Sandfeld
2010). For the purpose of this work, we will consider the former vector density theory of
3D, curved dislocations in face-centered cubic (FCC) crystals by distinguishing each of
the 12 slip systems [ 8] as a separate (vector) density field p'P1(r). The first instance of
this construction in the literature was due to Anthony and Azirhi (1998), and upheld by
Kroner (2001) in his final survey on continuum dislocation dynamics. The distinguishing
between slip systems , coupled with the high resolution of vector density theories allows
one to address a certain insufficiency of the Kroner-Nye tensor, a := Z}f:l Pl @ blfl to
predict its own evolution (El-Azab and Po 2018; Hochrainer 2007; Kroner 2001). Beyond
the separate treatment of slip system densities and the expression of the line direction as
a vector valued density, no other quantities are necessary to define the correlations. How-
ever, we would like to examine the impact of the spatial resolution on the current corpus
of literature on dislocation correlations.

Several researchers have considered the dislocation density as the spatial convolution of
the discrete dislocation lines with some compact kernel of characteristic length L (Lesar
and Rickman 2004; Rickman and Lesar 2006; Valdenaire et al. 2016). These studies seem
to follow a suggestion by Groma on how to interpret the smooth dislocation density field
(Groma and Balogh 1999). The most recent of these studies, Valdenaire et al. (2016), has
found that the spatial correlations in a dislocation system are dependent on the convo-
lution length L. We will follow this formalism as well, with our approach most closely
following that of Valdenaire et al. (2016), albeit at a significantly smaller length scale than
they consider.

One of the major purposes behind this length scale dependent scheme is that it allows
us to distinguish between dislocation structures which occur at two different scales. The
local structure—at a length scale on the order of or below the convolution length L—can
be associated with the correlation, while the spatial variation of the mean-field density can
be used to describe longer-length structures such as dislocation patterning. Such patterns
have been observed in some of the mean-field theories already presented (Groma and
and Balogh 1999; Xia and El-Azab 2015a; b). There is also evidence of these patterns in
discrete dislocation dynamics simulations (Deng and El-Azab 2007). One of the major
goals of the vector density continuum dislocation dynamics is to observe the formation of
these patterns, as they are thought to play a significant role in the response of crystalline
materials to monotonic and cyclic loading (Li et al. 2017; Sauzay and Kubin 2011). If these
patterns can be reproducible, vector density continuum dislocation dynamics can be used
in conjunction with its description of the finite deformation of crystals (Starkey et al.
2020) to solve micron scale plasticity problems such as crack initiation (Bao-Tong and
Laird 1989).

None of the above mean-field approaches are capable of capturing the true kinetics
of a dislocation system. This is due to one unavoidable fact: dislocation interactions
depend on the relative arrangement of dislocations, while mean-field theories all involve a
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systematic “forgetting” of this precise relative arrangement. This lost information regard-
ing the relative arrangement of the dislocations can be represented by means of disloca-
tion correlation functions, and is precisely the information which our present formulation
purports to recover. The reason we wish to recover this information is that the kinet-
ics of the dislocation system are strongly dependent on it through the energy functional
of dislocation interactions. In mean-field approaches, the interaction energy and, cor-
respondingly, the short-range stress field contain errors. Depending on the mean-field
formulation chosen, this can represent different information that is lost. In the 2D density
formulation, the density field is considered to vary only over distances significantly greater
than the average dislocation spacing 1/,/po (where pg is the average dislocation density
of the entire crystal). In such cases, the short-range information the correlation recov-
ers is the interaction of distinct dislocations. If a 3D, density-based approach is used and
the density is allowed to vary faster than the average dislocation spacing, the mean-field
still loses some information regarding connectivity and line tension effects. This has been
seen to cause errors in the short-range stress field (Bertin 2019). However, these missing
elastic effects can be recovered from the mean field dislocation density and its gradients
with certain integral moments of the correlation functions (Zaiser 2015). As a result, there
has been significant interest in calculating the form of the correlation functions.

Two means have been explored to evaluate the correlation functions. The first fol-
lows statistical mechanical arguments to arrive at analytical forms of the dislocation-
dislocation correlation function, while the other calculates the correlations brute-force
from discrete simulations. Investigations along these two lines have elucidated some of
the alterations which the correlation functions introduce into the dynamics in homoge-
nous systems. In summary, the correlations produce additional stress terms (a friction and
back stress in homogenous 2D systems (Groma et al. 2003; Valdenaire et al. 2016; Zaiser
2015)), and alter the mobility of the mean-field density (Kooiman et al. 2015).

As mentioned, there have been attempts to analytically compute the geometrically nec-
essary dislocation field induced in a homogenous dislocation field due to a dislocation
pinned at the origin, controversially interpreted as a correlation. The analytical solutions
obtained, however, still require a parameter which must be fit to discrete simulations
(Groma et al. 2006; Limkumnerd and Van Der Giessen 2008; Zaiser 2015)—for the clear-
est presentation of this parameter, see Zaiser (2015). As a result, one goal of the current
work is to present a formalism by which these correlation functions might be computed
directly from discrete dislocation configurations.

The question then arises as to how one might compute these correlation functions from
discrete data. There have been several attempts to accomplish this task. They all involve
the simulation of a random, homogenous distribution of discrete (2D) edge dislocations
which have been relaxed at zero stress. The resulting relative separation vectors of same-
sign and different-sign dislocations are binned into a histogram and normalized by the
total dislocation content of the simulations. This is then as the correlation function. The
first investigations which used this method (Gulluoglu et al. 1988; Wang et al. 1997) were
largely motivated by a characterization of the dislocation microstructure, and agree with
later evaluations of the correlation which arose with interest to the dynamics (Groma et
al. 2006; Groma et al. 2003; Zaiser et al. 2001). However, the only attempt in 3-dimensions
attempted to evaluate a radial distribution function of the scalar line density (Csikor et
al. 2008), but it does not enter into the interaction energy calculation in a direct way.
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Valdenaire et al. (2016), using their convolution length dependent mean-field theory,
were able to ascertain a dependence of the correlation on the convolution length using
this binning method. A dependence on convolution length should be anticipated, as the
convolution length controls the partition of relative arrangement information between
the correlation and the density field: as the convolution length decreases, the mean-field
density represents a better picture of the relative arrangement of the dislocations, and
less correction is needed from the correlation functions. However, it also follows that by
adjusting this convolution length, one may be observing qualitatively different relative
arrangement information.

The present work represents an application of a convolution formalism approach
to the high-resolution vector density theory of 3D dislocation arrangements, while
in the process deepening the statistical underpinnings of the theory itself. The work
may be outlined as follows: in “Measure theoretic definition of correlations’, we
define a measure theoretic picture of the dislocation ensemble and the various den-
sities, two-point distributions, and finally correlation functions which it produces; in
“Evaluation scheme’, we outline a means of evaluating the result from discrete simula-
tions. In following sections, we apply this formalism to discrete dislocation configurations
and present the correlation functions for dislocation pairs on like slip systems.

Measure theoretic definition of correlations

In order to arrive at a definition of the correlation function, we first motivate the discus-
sion with a definition of the energy of a discrete dislocation configuration. We then follow
with a discussion of the ensemble, mesoscopic density fields (mean-fields), and arrive at

a definition of the correlation function which reveals a clear path forward in evaluation.

Energy functional of a discrete dislocation configuration

Let us consider a dislocated FCC crystal. The dislocation configuration represents 12
1-dimensional manifolds £ embedded in the crystal manifold M, which we consider
identical to R3. These manifolds represent the dislocations on each slip system [«]. The
elastic energy functional of the system E can be expressed in terms of a double line integral
over |y Ll

12
1
E=— dl dr (&l Bl : £lwBlp, — p , 1
201%::1/5[“] /L[ﬂ] (E r®§ (r’>) (ri—rr) 1)

where £[%) denotes the unit tangent vector of L%, and £ [«A] denotes an energetic interac-
tion kernel, a second rank tensor representing the energetic interaction of two differential
segments d/ and dl’ on slip systems [ «] and [ 8], respectively. The interaction kernel is of
the form Hirth and Lothe (1982); Zaiser (2015):

1
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Now stated, we will decline to use this expression in further analysis. For the sake of
brevity, the dependence of Eq. (2) on the slip systems will be put aside to be reinserted at
a later point in the analysis.
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We choose to represent our system with a spatial field describing the density of lines
around a given point in space (time dependence is implicit throughout the formulation
presented here). As a result, we must define our basic (discrete) system in terms of a
singular dislocation density o;(r) which we will refer to as the discrete dislocation density:

o(r) := /Ldl S(r—rp), (3)

where we have used the vector-valued differential line element d/ := dl & (r)).

This dislocation density defines two measures on M:

1o (£2 N M) ;:/gaﬁr:/ dl (4)
Q LN

1o(Q S M) :=/ lo| d°r = dl. ()
Q LN

These measures represent the geometrically necessary dislocation content and total dis-
location line length contained in €2, respectively. These are singular measures with respect
to the volume measure, as they are non-zero on sets of zero volume (subsets of £).

The density above allows us to re-express the energy functional by the following
integration:

E= % / / Ej(r —ai(r)oi(r') drd’r’ ©
MxM

where i, j represent the vector components of g(r) and Einstein’s summation convention
is implied. In this form, it becomes apparent that the energy functional represents a sum
of nine integrations of &; against nine measures djiy,o,. These measures, however, are
distinct from the measures in Eq. (4). Rather, du,,o; represent measures of the product
space M2, In the discrete case which we are considering, this product measure is simply
expressed as the product of the discrete measures: dito,o; = 00; d3rd®r’. However, we are
interested in a statistical description of the dislocation configuration; in such a descrip-
tion, this product measure no longer has such a trivial form. In the following subsections,
we will consider a definition of our statistical description, in the course of which it will
be apparent why this product measure requires additional considerations. We will then
return to examine Eq. (6) in light of this statistical description.

A probabilistic definition of ensembles

While the “ensemble average” has been repeatedly employed in the discussion of disloca-
tion dynamics, there has yet to be any rigorous definition of such an ensemble. While this
work may not completely arrive at such a lofty goal, it is the hope of the present authors
that the following discussion will help to clarify what sort of entity this ensemble is.

The fundamental problem that we face in continuum dislocation dynamics is the fun-
damental problem of statistical mechanic, namely that of coarse-graining: given some
limited information about a dynamical system (having thrown away more a detailed
description), what conclusions can we draw from that limited information? Given an
“ensemble” of microstates, what conclusions can we extract from the macrostate, some
common property of this ensemble? In equilibrium considerations, this ensemble of
microstates consists of copies of the system which are in some way equivalently pre-
pared (Valdenaire et al. 2016; Zaiser 2015). However, when we move into non-equilibrium
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considerations , this is no longer a useful analogy. When the average properties of the
ensemble are changing, this implies change in the underlying microstates.

To elucidate the meaning of the non-equilibrium ensemble, we have to switch modes
from thinking about equivalently prepared systems to conditioned probability spaces. An
ensemble in the mathematical sense is a probability space conditioned by the level sets of
a macrostate function. The reason that we have motivated this discussion by the above
treatment of the discrete energy functional (Egs. 1 and 6) is that it informs the choice of
macrostate variable: the dynamics of the coarse-grained variable are recoverable deter-
ministically only if the energy is expressible in terms of the macrostate variable (Ottinger
2005a).

To be precise, an ensemble consists of four objects: 1) a space I' where the discrete
arrangements are fully described; 2) a macrostate function W : I' — T which represents
a map from the microstate space to a (generally) lower-dimensional coarse-grained space
T; 3) collections of subsets of the microstate space o (I") (these are technically o-algebras,
the details of which can be found in Appendix A and Durrett (2019)); and lastly, 4) a
probability measure Py which somehow uses the macrostate map to assign probabilities
to all sets in o (I):

Py :o(I') —>[0,1] (7)

such that Py (I') is equal to unity. This tuple, (I, ¥, o (I'), Py) is a sufficiently precise def-
inition of what is meant by the ensemble. Not only can it express the statistical mechanics
involved in equilibrium systems where W is time invariant, but also holds in the case of
non-equilibrium systems where W has a non-trivial time evolution. The precision of this
measure-theoretic definition of the ensemble is necessary to discuss the difficulties of the
dislocation ensemble.

As a probability space, the ensemble comes equipped with a projection operation which
we will refer to as the ensemble average. The ensemble average represents a projection
from functions of microstate variables y € I' to functions of macrostate variables v € T

in the following manner:

AG)) W) = /r dPyA(). (8)

There are two ways to define an ensemble in the traditional sense. In the first, the
behavior of the microstates is analyzed on a single level set of ¥ (e.g. the microcanoni-
cal ensemble where W := E). In the second, the ensemble average of W is constrained to
a given form, and a probability distribution is chosen from the many possible probability
distributions by means of another principle (e.g. the canonical ensemble, where ¥ := E
and (E) := kT/2). For a more detailed explanation of such ensembles, referred to as gen-
eralized microcanonical and generalized canonical ensembles, respectively, see Ottinger
(2005b).

We realize that the set theoretic notation used above may not be accessible to the aver-
age reader; for this reason it has been explained in Appendix A by demonstrating how
this operation produces the microcanonical and Gibbs’ canonical ensembles.

A means of constructing a dislocation ensemble
As we have seen above, to construct a dislocation ensemble, we must first consider the
space I' in which all possible discrete dislocation configurations are contained. We will
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then choose a macrostate function and constrain its ensemble average to arrive at some
intuitions regarding the ensemble itself.

In the case of a dislocation configuration, a completely determined description is a state
such as we have already discussed: the collection of the twelve line-objects corresponding
to the twelve species of dislocation line { L] }3:1 The space of microstates, then, is the
set of all space curves, with a few minor constraints regarding being confined to the slip
planes as well as the non-termination requirement.

Now let us choose a macrostate function. Instead of a scalar functional like the total
line content, the plastic strain, or the energy of a simulation box, we choose the discrete
dislocation density distribution @(r). This represents a map from the space of dislocation
configurations to the space of vector-valued distributions in R3:

Wi{L} > D3, W(L) =g () ©)

In a similar operation by which the canonical ensemble is constructed by enforcing a
certain average value of the energy, we may construct our dislocation ensemble by con-
straining two ensemble averages of 9 (r) to a particular distribution, which we will call
the mean-field dislocation density vector p . (r). The reader is advised to distinguish the
calligraphic g—the discrete density field—and p—the coarse-grained density field. Such
a distinction is significant to the remainder of the work. The ensemble is then defined
by two constraints. Firstly, we constrain the vector ensemble average, and secondly, we
constrain the magnitude average by introducing a probability distribution P gg such that:

o) = / Puee(dL)a s () = p(r), (10)

(la-e,()) = /PLBE(dE)Ifl roc()=la-p). (11)

where a represents any constant vector. We refer to this second constraint as the “line
bundle” constraint, as it implies that all the microstate densities are roughly parallel to the
mesoscopic density vector. This constraint eliminates the possibility of so-called “statis-
tically stored dislocations” by disallowing geometric cancellation of dislocation densities
in the ensemble average. Generally, formalisms have been used where the total scalar dis-
location density at a point is not necessarily equal to the magnitude of the vector density
(Hochrainer 2015; Zaiser 2015). This means that we are treating a different ensemble than
these formalisms; our goal in the present work is not to present an ensemble consistent
with such formalisms, only with our own. However, these requirements do impose a sig-
nificant constraint on the choice of the vector density field, namely the spatial scale on
which it is allowed to vary (Lin and El-Azab 2020; Xia and El-Azab 2015a).

In the line bundle constraint, there was no mention of a specific choice of mean-field
density. Any smooth density field may be chosen as long as it meets some criteria which
are necessary for it to be consistent with the underlying dislocation objects. Firstly, it must
be solenoidal (i.e. V- p = 0) due to the requirement that dislocations not terminate within
the crystal; this condition may be somewhat relaxed if one desires to treat dislocation
networks. Secondly, the density must be able to vary in space on a scale at which dipoles
annihilate (taken to be on the order of 50—150 nm).

There exists an operation by which a density field which meets these criteria a priori
can be created. Begin with some parent dislocation configuration £y with discrete density
00(r). Define the vector density field as a convolution of this parent configuration with a
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weight function wy (r) with compact support €2 characterized by some length parameter
L which we will refer to as the convolution length. The vector density field is then defined
as:

p(r) = (wp * 0)(r) = /Q wr(r)eo(r — 1) d°r'. (12)
L

The solenoidality of the dislocation density is inherited from the discrete density dis-
tribution. However, in accordance with the variation length considerations mentioned
above, the length L is considered to be on the order of 50-150 nm. We would like to
point out that the use of the convolution operation does not replace our statistical discus-
sion of probability measures and ensemble averages. Rather, by constraining the ensemble
average to this convoluted density, the probability measure is induced (cf. Appendix A
where a similar operation is performed to obtain Gibbs’ canonical ensemble). For a brief
recapitulation of this process, consult Fig. 1.

We further note that this small convolution length is in large part where the present
work (as well as previous works by the second author) may differ from coarser resolution
models. In previous works explicitly considering a convolution of the discrete configura-
tion, L was chosen to be on the order of the mean dislocation spacing in the simulation
volume (Valdenaire et al. 2016). enabled those authors to apply equilibrium arguments
like local homogeneity and steady state flow. However, the purpose of the present model
is essentially to solve for the transient flows in a microscopic continuum context, for rea-
sons already outlined in the introduction. Moreover, longer convolution lengths would

a)

1

0z, = +6 * wy = P
Convolution
- = 1

b) P(L~Ly) =P, P(L~Ly) = EPO

1 ' 1

1 >
P(LLp)=0 P(L~Ly) = '2-P0 ; . ,
T
' i p=(e)= fp(dL)QL

Fig. 1 An overview of the formation of the line bundle ensemble by a generalized canonical approach. In (a),
note that a single parent microstate Ly is used to generate the mean-field density p(r) by convolution with
some weight function wy, i.e. p(r) := (@ * w;)(r). b shows a toy model of the induced probability measure
on the space of dislocation configurations. The ensemble average of the discrete density (i.e. integration
against this probability measure in the space of line configurations), is constrained to equal the mean field
density. By equating the ensemble average to the field generated by means of the convolution operation, we
can induce a probability measure by means of some maximum entropy argument. One property of the
probability measure, however, is guaranteed by the line bundle constraint: the class of states {£ L p} (for
which the discrete density is of the opposite sign as p), is necessarily of null probability (see Appendix B)
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need to be treated with a model which allows multiple dislocation line directions at a
single point, e.g. Hochrainer (2015).

Product measures and correlation

The previous sections served to elucidate the statistical constructs implicit in defining a
vector density field. We now wish to return to the problem of the recoverability of the
energy (and thereby the kinetics) from the mesoscopic dislocation density vector. This
requires an examination of (E). By linearity of the integral, this is simply:

1
&= [[  gr-rlamew) driv (13)
MxM

Let us examine this expression. This represents a sum of nine integrations against 9
measures (or 4 if the dislocation densities are planar) on M x M. We make the assump-
tion that these nine integrations are each recoverable rather than only being preserved in
sum. As such, we will treat them individually, and denote the treatment of an individual

component by replacing the indices with an asterisk:

e = [ /MxM Eur = 1) (0 M0u ")) drdy, (B) =3 (E.). (14)

Now we are interested in the measure produced by the two-point density, i.e. dvproq =
<Q*(r)g*(r’ )). We would like, however, to integrate against the “naive” two-point density
measure with similar indices, i.e. ditngive = px () px (¥ )d3rd®r . To perform such a trans-
formation, we must first examine why these two are not equal. In the process, we will
understand precisely what information was lost in the averaging process.

A line £ contains not just information regarding the configuration at a single point, but
at all tuples of points. If two points lie on the line, the tuple will be contained in £ x L.
Similarly, if a set of # points (r1, 79, ..., r,) all fall on the line, this tuple will be contained
in £”. This property also holds for the discrete density associated with L; the multi-point
distribution o(r1) ®0(r2) ®. .. a(r,)d>r1d%r; . . . d*r, contains the information regarding
the configuration at all these points simultaneously. However, when defining the ensem-
ble average, we did not constrain these multi-point distributions, only the single-point
distribution (@(r)).

To see why we lost this multi-point information in the course of ensemble averaging,

examine the ensemble average which results in the two-point density:

e ®e()) = /PLBE(dE) (0, ®e (). (15)

We may express this as an iterated integral by means of the identity convolution operation

with respect to PLpg:

(o(r) ® o(r)) = / Puge(dL) / PLe(dL) 8(L — £ (00(r) ® 0.0 (r)). (16)

This Dirac delta object (£ — L) ensures that the two-point density examines the interac-
tion between densities at two points only if those densities belong to the same microstate.
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The naive two-point density, however, does not contain this nuance:

p() @ p(r") = (o) @ (e()

= (/ PLBE(dE)QL(V)> ® (/ PLBE(dL/)QC’(r’)>
p(r) @ p(r) = /PLBE(dE)/PLBE(dU)(QL(V) ® o (1)) (17)

As a result, the naive two-point density contains information regarding interac-
tion across microstates. This is obviously unphysical, as the energy of a dislocation
configuration cannot be dependent on these ghostly interactions with other possible
configurations.

However, this is not to say that we are unable to capture the true interactions by
integrating against the naive product measure; we may do so in the following way:

Vprod(A) :/dvprod = ‘/I;gdlina‘ive VA C M, (18)
A

where g(r, ') here denotes the two-point correlation, which is a Radon-Nikodym deriva-
tive. There is a condition on the existence of this function, which is that vpoq must be
“absolutely continuous” with respect to ppaive (Durrett 2019). That is, for all A € M such
that finaive (A) = 0, Vprod (4) must also equal zero. This is guaranteed as a corollary of the
line bundle constraint. See Appendix B for a rigorous derivation of this property of line
bundle ensembles.

For our case in which both vpr0q and finaive have density functions, the Radon-Nikodym
derivative is simply expressible as:

dvprod (Q*(I')Q*(r/»

(%) (r, r/) — = . (19)
£ dnaive Px(r) psx (1)

This function is protected from singularity in the denominator precisely by the absolute
continuity property. It represents in some sense a spatial correction for the erroneous
ghost interactions between microstates. It does this by applying a scale factor to the naive
two-point density, i.e. at some pairs of points r, 7" the naive two-point density is likely to
be due to the ghost interactions: at such locations g(r, r’) will be less than unity. At other
pairs of points, the naive two-point density might underpredict the true interactions: at
such locations g(r, r’) will be greater than unity.

We further note that the ‘mean-field’ densities which appear in the denominator of
Eq. (18) are in fact local fields. Like the introduction of the line bundle constraint, this
is a point of departure from treatments which consider the denominator to be the aver-
age density over an infinite domain (cf. (Deng and El-Azab 2007; Stoyan and Stoyan 1986;
Zaiser et al. 2001)). The treatment in Valdenaire et al. (2016) does use a local mean-field
density, but at a significantly different resolution.

This definition does not involve any form of tensor summation. Some may object to the
use of vector index notation in the above equation, but we have considered each compo-
nent of pi(r)pjr’ and Qi(r)Q]‘i"/ as separate scalar quantities throughout this discussion of
measures. This equation is no exception to that rule. The above equation is best under-
stood in the sense that (Q,-(r)gjr/ ) =g (r,r)pi(r) pjr’, with 2% being a scalar correlation
transforming the individual components of the tensor product p;(r) p;r" of the mean field
densities to the equivalent components of the two-point density, which is also a tensor.
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We also note that the ensemble average is a linear operator, since it is simply integra-
tion against a probability measure on the microstates (cf. Egs. (8, 10, 11)). Since, however,
the mean-field product by definition is a constant function on the microstate space, it
commutes with the ensemble average resulting in the following relation:

0i(r)oj(r’)

W) (1 —
g7 <M@MW)

>=@m@w» (20)

where we have introduced a field which we will refer to as a “protocorrelation density”

0i(r)
pi(r)’

0i(r) := (21)
Thus, we have arrived at a form of the correlation which more clearly informs us how
to evaluate it from discrete data. We notice that the protocorrelation is a non-negative
function, as the sign of p;(r) and p;(r) are identical as a corollary of the line bundle con-
straint. Given some way of evaluating this ensemble average, we must merely examine the
average product of protocorrelation densities at two points.
The energy of the system (integration of the interaction kernel against the product

measure), can now be expressed as:
1 ] ’ ’
(E) =3 > / / Eir — ) g9 (r, 7)) pi(r) pj(r') drd’r. (22)
ij MxM

Before we move on, however, we reintroduce in a straightforward manner the multi-slip
aspect of the dislocation configuration (previously dropped from Eq. (1)) in the following
two equations:

12
1 y
Ey==>") / / P — 1) g, 1) ol ) o () dPrdPr . (23)
2 5o T I mxm

with
g(iy/)[a'ﬂ} (r’ rl) — <él[0(} (r)é][ﬂ] (r,)> . (24')

Evaluation scheme

The evaluation of the ensemble average in Eq. (24) is not by any means trivial. The par-
ticular dislocation ensemble which we have constructed in the present work cannot be
realized by the simple superposition of many simulation boxes of discrete dislocations
onto one another. In fact, we only ever have access to a single microstate: the parent
configuration in Eq. (12). In the present section we present a scheme by which we may
evaluate the expression for the correlation function seen in Eq. (24). This is a two-step
process. The first step involves a discretization scheme in which we mollify the singular
densities present in @l[a](r). The second step is to define a certain statistical homogene-
ity assumption that will allow us to empirically measure the underlying random variable
@l[a] (r)@][ﬁ ] (r') using only the parent configuration.

Regularization scheme
In order to evaluate any expression containing él[“] (r) from simulation data, we must mol-
lify the singular character of the discrete density Ql[a](}"). In order to perform this, we
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perform a double convolution with some weight function wy, suppressing for the moment
the slip system notation:

wo * g (1, 1) % Wiy = ((8; % wo) (r) (6 * wp) (). (25)

The prime or lack thereof denotes whether the convolution is over ¥’ or r, respectively.
The weight function is arbitrary, so long as it has unit integral and is of small, compact
support characterized by some length /y. If the convolution length in the mean field cal-
culation (L) is significantly longer than /p, then we may treat the mean field density as
constant over the support of wy, simplifying our expression of ¢ * wy:

(26)
Pi

Note that we have incorporated the weight function convolution into a compact notation.

Empirical measurement

To understand how we can empirically measure the correlation, let us examine how
empirical measurements of a random variable are made. For clarity, we will proceed with
several definitions which are quite standard. Given some random variable X and # inde-
pendent measurements of that variable X;, we may be confident that by the law of large
numbers the empirical mean approaches the ensemble average:

n
_ e
X::% -  u={X), (27)

)52 — Z?zl(xi - M)2
n

We also know that by the central limit theorem, the following normalized sum con-

2 .= Var(X). (28)

verges in distribution to a standard normal random variable:
Z?:l X; — ,U«)Z
sy/n
It follows by continuity of the inverse square root that:
?:1 Xl' n
n vV Z?=1(Xi - M)z

As aresult, we may quantify our uncertainty by noting that 68% of measurements will fall

N(O,1). (29)

—  N(,1). (30)

in the range:
X +o, (31)

where o := VX2 /n we define as the standard error of the empirical measurement.

If we examine the average we wish to compute, a path forward in identifying indepen-
dent measurements should become apparent. Consider first the case where only one slip
system is present in the crystal. In this case, the averages which we would like to consider
are of the form:

g1y = (6: ;). (32)
If we can form some collection of independent measurements of this random variable

N
{ of (r),(:);< U )} o Wecan apply the law of large numbers to obtain the mean as:

Z[Ql maren] S (e ) (33)

k=1
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and even obtain a confidence interval of this calculation by means of the central limit
theorem.

If the random variable o (r)é;‘ (') is independent of the information local to any point
in the crystal, we can treat spatial observations of the right-hand side of Eq. (32) as inde-
pendent. The operation of defining the ensemble by using the density vector field as the
macrostate constraint in another sense defines the density vector field to be the only
available local information. As a result, it is sufficient to assume that the functional form
of g (r,r + Ar) is independent of the density field at r or #’. In more rigorous terms,
to treat spatial observations of o} (r)@f (r + Ar) as independent events, one must only
assume that:

3¢ (r,r + Ar)
sp(r)

where the § operator here represents the variational derivative. The variational deriva-

0, (34)

tive above amounts simply to the statement that by expressing the two-point density as
<Q?‘(r)Q;‘(r' )) = pi(r)pj(r’ g (r,7), we have explicitly considered the density depen-
dence of the two-point density.

The implication of this assumption is that the correlation function describes the average
neighborhood of a unit density component regardless of the magnitude of the density.
We will refer to this assumption as a statistical homogeneity assumption, as it allows us
to treat all points with non-zero density as equivalent measurements of the correlation
product. Moreover, it allows us to drop the spatial dependence on r and to consider the
correlation as only a function of the separation distance Ar :=r — r’:

gy - g¥(Ar). (35)

A correlation of this form represents a sort of average atmosphere of j-component density
field surrounding a point of non-zero i-component density. As a result, it makes intuitive
sense that we may observe this average atmosphere by examining a large number of local
atmospheres surrounding a large number of points in a single microstate (namely, the

parent microstate Lo).

Sample classes in the simulated crystal

At this point, we choose to make explicit what is meant by observing spatial points in the
simulated crystal and how these are used to compute the correlation function using the
methods discussed in the previous subsection. Choosing a sample grid S to be a finite,
countable collection of position vectors:

S={r,, (36)

we then have a measurement of o} (r)[?]’." (') at all points in § x S, N? in total.

To create classes which contain observations of the same correlation average, we
consider two factors. We consider points equivalent if they are kinetically or kine-
matically equivalent up to the value of the microscopic dislocation density. We call
points kinetically equivalent if the interaction energy would be equivalent, and we call
points kinematically equivalent if the transport relations of the discrete density would be
equivalent at the two points.

We will now translate these requirements into partitions of our measurement space
S x S. Consider first the kinetic equivalence classes. Examining the dependency of the
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interaction kernel &; (Eq. (2)) allows us to note that two pairs of points are kinetically
equivalent if they share the same separation vector r — r’. This allows us to partition S x S

into equivalence classes:
Sxar={rr)eSxS:r—1r =Ar}. (37)

Furthermore, we note that the transport behavior of a location with zero density field
is significantly different from locations where there is a density field present. Thus we
consider the set:

S:={reS:pi(r) #0fori=1,23}. (38)

Considering the points which are kinetically and kinematically equivalent results in a

partition of the measurement space into sets of interest:
nA,:={(r,r’egxgzr—r’=Ar}=(S><S)Arﬂ(§x§) (39)
and irrelevant sets (S X S)Ar \ (§ x S).

Treating these sets of interest as equivalent measurements of o} (r)é]’." (r'), we may now
apply the law of large numbers and central limit theorem to the correlation expression in

Eq. (32):
.. . 1 5 5
wo *g(ly])(Ar) k WZ) = nAlrlgoo TAr Z Q;k(rﬂAr)Q;'k(r,ﬂAr)’ (40)
TTAr
) 1/2
G — | o oX(r - (&) /
o = lim - LZ (21 ()8} () = wo .7 (Ar) 5 i ] . (@)

where we have represented by na, the cardinality of w,. We note two things regarding
the standard error functions. First, this standard error does not represent the standard
error in the calculation of g(i’j) (Ar) but rather in the double convolution wq* g(i'f) (Ar) *wé)‘
Secondly, the standard error varies with the components i and j as well as being a spatially
varying field.

Multi-slip considerations

Further discrimination among our sample points becomes necessary when we consider
systems with twelve slip system protocorrelations @l[“] (r) (we momentarily suppress the
convolution notation in favor of slip system dependence). We first consider an altered
form of S which is unique to each slip-system:

Sled . {reS:Ql[a](r) £ 0fori= 1,2,3}. 42)

Measurements of the product él[“] (r)él[m (') must therefore be elements of Sled x Sl
An additional constraint on kinematically equivalent points also emerges only in the
multi-slip case. Sessile dislocation segments, having a Burgers vector which is a sum of
two of the slip system Burgers vectors bgess = bl £ plPl A such, such a segment can
be represented by two overlapping densities at that point, i.e. |Ql[a](rsess)|, |Ql[ﬁ ](rsess)|.
However, in order to take into account their limited kinematics (lengthening along the
intersection line between slip planes) the dislocation density transport equations must be
suspended at these points. For this reason, we do not consider these points equivalent to

points where only one density field is present.
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To be precise in this omission, consider the sets G% and J(*#! (glissile and junction):

gl .= 3l A 5B for o £ B, (43)
12
Glel .— Sled \ U ][%/‘3]' (44)
atp=1

Thus, there are three new types of pairs in our sample partition: glissile-glissile pairs,
junction-junction pairs, and glissile-junction pairs. We will in the present work only
consider the glissile-glissile pairs:

ngxr’ﬂ]gg = [(r, ) eGY xGFl .y —y = Ar}. (45)

To summarize, in a multi-slip dislocation system, there are several classes of correla-
tion functions, calculated as in Eq. (40) with varying types of pair sets considered. Most
broadly there are the glissile correlations and the junction correlations, the distinction of
which we have treated immediately above. Secondly, there are what we will refer to as self-
correlations and cross-correlations, considering like-slip-system densities and unlike-slip
system densities, respectively. That is, their pair sets are of the form of Eq. (45) with 8 = «

and 8 # a.

Calculations

As a preliminary consideration, we have calculated a small subset of the correlation func-
tions from a set of discrete dislocation dynamics simulations. Specifically, we consider the
glissile self-correlations only.

Dislocation dynamics simulations
Discrete dislocation dynamics simulations of copper were carried out using microMegas
(Devincre et al. 2011). A total of 45 simulations were performed, all beginning from ini-
tial configurations of dipolar loops in a periodic box of dimensions 4.4um, 4.90um, 5.8
um. The dipolar loop configurations consist of four edge dislocations on two slip sys-
tems, all 1 pm in length. 15 distinct seed numbers were used in the pseudorandom
number generator in order to create the initial configurations, and simulations were run
in a strain-controlled mode to 0.3% plastic strain. Parameters used to create the initial
configurations can be found in Table 1, while simulation parameters for the dislocation
dynamics simulations can be found in Table 2. Each configuration was subjected to 3 sim-
ulations with tensile loading in the [100], [010], and [001] directions respectively. This was
done to suppress any dependence which may have arisen in the correlations due to the
loading direction, as such a dependence has been seen to occur in 2D dislocation dynam-
ics simulations (Valdenaire et al. 2016). These 15 initial configurations were each subject
to three simulations, resulting in 45 dislocation trajectories for analysis.

These 45 simulations do not represent 45 different microstates which we take to be
representative of all the states in our ensemble. Any hope of doing so is futile: there would
be no way of assessing this “representativeness.” Rather, these are taken as 45 spatially

Table 1 Initial configuration parameters

Initial dislocation density 2um—2

Box lengths: [100] 4.40 um
Seed structure Dipolar loops [010] 4.87 um

Length of segments in seed structure 1 um [001] 5.74 um
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Table 2 Discrete dislocation dynamics parameters

Strain rate 205! Line tension model de Wit

Time step 2ns Relaxation 200 ns (no reactions)
200 ns (with reactions)

Temperature 300K Lattice unit 122 nm

Cross-slip Activated Slip plane distance (echelle) 16.4 nm

limited views of the single parent microstate, treated as being infinitely far removed from
each other in the crystal.

Following these simulations, instantaneous dislocation configurations were extracted at
0.075%, 0.15%, 0.225%, and 0.3% plastic strain. These extractions will allow us to examine
how the correlation is affected as the simulation progresses and the total dislocation den-
sity rises. Figure 2 shows the representative behavior of this collection of simulations. The
stress-strain behavior is shown in (a) and the density behavior in (b). The black lines rep-
resent the mean behavior across all simulations, while the shaded region represents one
standard deviation away from the mean. The plastic strain locations where configurations
were extracted are shown on the x-axis.

Calculation of density fields

The scheme for post-processing the dislocation configuration data to obtain correlation
functions follows the line of reasoning resulting in Eq. (40). The crystal was discretized
into an array of sample points 720 points long in the longest direction; this amounts to an
8.1 nm distance between points. The discrete-level convolution length /o was chosen to be
twice this distance (16.2 nm) as this is the largest discretization distance in the simulation
(the distance between discrete slip planes). Subsequent convolution length are multiples
of the sample distance ranging from 24.3 nm to 162 nm.

25¢
E
20} =
2
< ‘B
& =
S 15 3
©n =}
o] 5
& 10} g
2
3 E
&

0.075 0.15 0225 0.3 ! 0.075 0.15 0225 03
Plastic Strain [%] Plastic Strain [%]
(a) (b)

Fig. 2 Representative simulation results from discrete dislocation dynamics. The representative stress-strain
behavior of the 45 simulations is shown in (a), while the representative total dislocation density evolution is
shown in (b). Both are plotted with respect to the total strain, while the plastic strain values where dislocation
configurations were extracted are shown. Both show the mean behavior at each timestep of the 45
simulations in black, while the shaded region represents one standard deviation away from the mean. a
shows little strain hardening in the simulated regime. b shows a linear increase in the total dislocation
density, roughly doubling across the regions of plastic strain we consider
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All convolutions were performed using a cloud-in-cell weight function:
1773 (LR T -
win < | 21T (1 - ’T) if |ri| < Lforalli=1,2,3 )
0 otherwise

originally exposited in Birdsall and Fuss (1969), and used previously in discrete-to-
continuum treatments of dislocations in Bertin (2019) on account of its analytical solution
for line integrals.

For each simulation output, we now have in hand the dislocation density p and vec-
tor density p at all points in the crystal at 10 different levels of coarseness. Since the
correlation calculation in Eq. (40) only involves the protocorrelation, and the support of
the protocorrelation is the support of the “discrete” density, we only evaluate the higher
convolutions on the support of 57

Only glissile segments were used in the calculation of these densities: sessile junction
segments (having Burgers vectors which are sums of the basic FCC Burgers vectors) were
ignored.

Computational results

The main goal of the present work is to present a formulation which allows these dislo-
cation correlation functions to be calculated. Preliminary results from this formulation
will be shown results for a small (but important) class of correlations. While the free
indices on g@)*Al(Ar) imply dependence on 3 vector components and 12 slip systems,
we considered here the correlations for which o = 8. We will refer to such correlations
as self-correlations. Since the two dislocation densities lie in the same slip system, we
refer to all separation distances and density components in terms of a slip-system coor-
dinate system consisting of the Burgers vector direction b, the slip plane normal 7, and
the binormal vector @ := 7 x b (which we will refer to as the edge direction). Together
these form a right-handed coordinate system ban. Separation vector components will
be denoted as Arj, Ar,, and Ar, respectively. For all present intents and purposes, the
density vector is a planar quantity, having only screw (b) and edge (@) components. The
self-correlations between the screw-screw, screw-edge, and edge-edge components are
discussed. The edge-screw component will not be discussed, as it is symmetric by parity
to the screw-edge component.

Among these results, we first present in Fig. 3 the dependence of the self-correlations
on the convolution length L. These are all shown in the Ar, = 0 plane (the slip plane
itself). We quickly note that all the features of the correlation function seem to be rela-
tive to the convolution length. Past some minimal convolution length (>65 nm), we see
qualitatively similar spatial variation up to some spatial rescaling due to the convolution
length. We suggest that the obscurity of some of the small features near the origin is not
qualitatively different behavior, but rather arises due to the convolution on the order of
8.1 nm discussed in Eq. (26). For this reason, we choose the largest convolution length
(162 nm) for the subsequent presentation of self-correlations, as it presents the clearest
picture of the correlation, being less obscured by this effect.

We would now like to discuss the spatial features of the correlation functions shown.
Since all convolution lengths displayed similar spatial structures, we present the largest
convolution length in Fig. 4 to allow resolution of the finer details. In order to interpret the
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Fig. 3 Dependence of the correlation tensor on the convolution length. All correlations shown are
calculated from the 45 configurations at 0.30% strain, and the correlations are relative to a “discrete density”
which is calculated with a 16 nm convolution length. The rows show the edge-edge, screw-edge, and
screw-screw components of the correlation function and the columns demonstrate progressively longer
correlation lengths. All figures show the correlation on the same color scale and relative to the same spatial
dimensions. For reference, the border of the coarse averaging region (the support of w; ) is also shown as a
hexagon, the intersection of the box with {111} type planes

spatial features, we return to what the correlation represents; namely, a component-wise
recovery of the two-point density from the product of single-point densities:

(0iroj(r + Ar)) = g (Ar) pi(r) pj(r + Ar). (47)

An interpretation of spatial features can be garnered from this expression. If g (Ar) ~
1, pi(r) pj(r + Ar) (the naive two-point density) represents an accurate picture of the two-
point density at such separation distances. The naive two-point density overpredicts the
true two-point density at separation distances where g (Ar) < 1 and underpredicts it at
separations where g (Ar) > 1. Since this is performed component-wise, it is naturally
agnostic any geometric interpretation.

We note that it is dangerous to seek a geometric interpretation of the correlation func-
tions in terms of dislocation lines. While much of the arrangement information encoded
in the correlation functions deals with single-line effects (i.e. segments in some way con-
nected to a differential segment at the origin), we caution against interpreting them in
this geometric way due to complications in their meaning for dislocations of mixed char-
acter. However, if such an interpretation is desired, examine the pure screw and pure
edge cases. Both the screw-screw and edge-edge correlations show a short-ranged under-
prediction in the “connected” direction (b and 4, respectively) and an overprediction in
the “un-connected” direction (& and b, respectively). However, in the case of pure screw
densities, when the separation distance exceeds the convolution length, we see a marked
underprediction of the screw density. In Fig. 4 this is on the order of 40%, in smaller con-
volution length systems in Fig. 3 this underprediction is on the order of 60%. It is worthy
of note that these maxima are seen to be relative to the boundary of the coarse weight
function wy, (shown as a dotted line in the figures). This suggests that these maxima are

not due to any geometric features of the dislocation configuration, but are rather caused
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Fig. 4 The spatial form of the correlation functions corresponding to the screw-screw, screw-edge, and
edge-edge components. Shown are correlation functions calculated at 0.3% strain and a convolution length
of 164 nm. The x-axis represents the spatial direction parallel to screw dislocations, and the y-axis represents
the spatial direction parallel to edge dislocations. The red regions are those separation distances for which
pi(r) pj(r + Ar) tends to underestimate the two-point density, and the blue regions are those where the
two-point density is overestimated. This leads to a simple geometric interpretation in the case of the
screw-screw and edge-edge components of the densities, but not so in the case of the screw-edge
component. Rather than showing a simple circle with radius L as in Fig. 3, we here show the intersection of
the plane in view ({111} type) with the support of w; (a cartesian cube)

by the averaging process. This will be discussed further when we examine the standard
error of the calculations and the influence of the heterogeneity of the coarse p;(r).

The second relation we would like to demonstrate is the dependence of the self-
correlations on the plastic strain, shown in Fig. 5. Self-correlations were calculated
separately from dislocation configurations at each strain step using 81 and 162 nm convo-
lution lengths. In the course of the simulation (from 0.075% to 0.3%), the total dislocation
density roughly doubles. However, we notice very little qualitative difference between
these correlation functions as they run to higher strains.

Next we show the out-of-plane behavior of these self-correlation functions calculated
at 0.3% strain with a convolution length of 162 nm. In Fig. 6, the first two columns show
the coordinate planes passing through the origin (zero separation), i.e. Ar, = 0 (the
an-plane) and Ar, = 0 (bn-plane) planes, respectively. In these plots we notice marked
anti-correlation (g < 1) for the off-plane separation vectors. This is expected, as we
should expect the mean-field density to overpredict the two-point density at off-plane
separation vectors on account of the likelihood of neighboring dislocations to be on the
same slip plane as the dislocation at the origin. In the subsequent columns, slices par-
allel to the slip plane are shown for normal distances up to two times the convolution
length, which equates to 324 nm in this case. We notice that this anti-correlation begins
at distances as small as one tenth of the convolution length, and that the self-correlations
converge to an uncorrelated state (¢ = 1) at distances greater than the convolution
length.

To examine this radial convergence to an uncorrelated state, we consider two types of
radial correlation functions. The first is integrated over circles in the slip plane with radius

s, while the second is integrated over the spherical surface with radius r:
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Fig. 5 Dependence of the correlation tensor on the plastic strain (a surrogate for the dislocation density). This
dependence (or rather lack thereof) is shown for two convolution lengths, 81 and 162 nm. The white dotted
circle has radius equal to the convolution length L. Each component of the correlation tensor is shown for
both convolution lengths. Plastic strain increases with descending row, with strain steps at every 0.075%
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Fig. 6 Out of plane behavior of the self-correlation calculated at 0.3% plastic strain and a convolution length
of 162 nm. The first two columns show the behavior for separation distances in planes normal to the slip
plane. Columns 3-7 show slices parallel to the slip plane at the indicated values of Ar,. Taken together, they
show that the correlation function is largely relevant only on the slip plane itself, seeing slight
anti-correlations for small out-of-plane separation vectors, and rapidly decaying to an uncorrelated state as
Ar, > L (the convolution length). Again, the intersection of the averaging volume with the viewing plane is
shown in order to identify features which seem to be influenced by this boundary
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g(i'j) (S) = /de g(lv/) (5101 n= 0)) (48)

¢ () = / dQ g™ (r, Q). )

These are plotted in Fig. 7. The in-plane radial correlation function is not seen to converge
to an uncorrelated state (¢ — 1 = 0). However, the spherical radial correlation function
does converge to zero within 5 convolution lengths of the origin.

Lastly, let us discuss the certainty of the calculation of the correlation functions. In Fig.
8b we see the effect of the heterogeneity of the coarse density field p;(r). At various sepa-
ration distances, the average value of the coarse density product p;(r)p;(r 4+ r’) is seen to
vary by roughly one order or magnitude. The effect of this is an increased standard error
(Fig. 8c) in these regions of low density product, calling into question the reliability of
the calculation in these regions. Of particular note is the sharp increase in uncertainty in
the unconnected directions in the screw-screw and edge-edge components of the corre-
lation function. Beyond a distance of roughly 100 nm (5/8 L), the correlation value comes
into question in the region very near the unconnected direction. Also of note is a marked
increase in the standard error at the boundaries of the averaging volume. This belies a
relationship to the averaging volume which depends not only the characteristic length L
but also on the weight function wy chosen.

Discussion
In this section, we would like to discuss some of the implications of the tensorial form
of the correlation used in the present work. Subsequently, we would like to discuss some
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Fig. 7 Radial correlation functions. Shown with £1 standard error region. The correlations shown were
calculated with a convolution length of 64 nm to examine large separation distances. The in-plane standard
errors are too small to display on these axes. The in-plane radial correlation does not converge to an
uncorrelated state (g — 1 = 0) in the spatial region examined. However, the spherical radial correlation
function decays quickly to zero, with the error bars including zero by r = 5L
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Fig. 8 Quantities relevant to the certainty of the correlation calculations. For reference, the correlation
functions are shown again in (a). The empirical mean of the coarse density product p;p; normalized by the
maximum value is shown in (b), and the standard error of the correlation calculation in (c). When the average
density product (b) becomes small, this leads to a significantly increased standard error in the calculation, as
it appears in the denominator of the correlation calculation of Egs. (40-41). Notably, several regions of the
separation space on the plane are seen to have standard error values comparable to the magnitude of the
correlation, namely in the unconnected directions (the y-axis in the screw-screw case and the x-axis in the
edge-edge case). All quantities shown are calculated for the coarsest calculation (=162 nm)

of the preliminary implications of the findings with respect to incorporation into con-
tinuum dislocation dynamics schemes based on a vector density approach. This will be
followed by a discussion of some open questions which were not settled by the present
investigation.

On the tensorial nature of the correlation

There is an important feature of the dislocation correlation function which warrants fur-
ther discussion, namely, the tensor nature of the correlation. In the most basic sense, the
correlation is simply a transformation between two tensorial quantities:

(0ir)oj()) = g™ (r — ¥ pi(r) pj(r"). (50)

In the above equation and in all treatment throughout this work, the correlation g
represents a scalar transformation between one component of two tensor fields. How-
ever, one might have expected a more general linear form involving a fourth-rank tensor,
namely:

(0iej()) = Gy — 1) pi(r) pi (') (51)
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However, the form which we have used throughout is equivalent to a diagonal fourth-rank
tensor of the following form:

3
Gia(r — 1) = Y g (r = )8 itmbjin- (52)

m,n=1

We have used the symbol 8, which is equal to unity in the case where i = j = k and
zero otherwise. This rank three tensor—which is analogous to, but not to be confused
with the Kronecker delta—allows diagonal second-rank tensors to be represented by a
vector: Djj = §;xvk. This diagonal form was chosen in the slip-system specific coordinate
frame (ban, Burgers-edge-normal directions) not only to ensure the simplest component
form (the density vector is planar in this case), but also because the interaction kernel is
most simply expressed in a coordinate system containing the Burgers vector and the edge
vector as well.

Under transformation of the underlying spaces by the same coordinate transformation
Qyi; expression (51) transforms as follows:

(QuQj0i0)) = QuQyil0ic;))
= QuQjGjui Prp;
= (QIiQ]j Gijki Q;kQLTO (Qux Qi Prp;)

(0107) = Gyri prpL

We thus see that Gy (r — r’) transforms as a fourth rank two-point tensor (second rank
in each leg). However, due to the two Kronecker deltas in the definition of Gy, it has
the same number of non-zero components as a second rank tensor. For simplicity, the
non-zero components were referred to by their second rank equivalents throughout the
work; g was treated as having screw-screw, screw-edge, and edge-edge components,
respectively (cf. Voigt notation, especially the diagonal components of his tensor bases).
This choice of a diagonal form of the tensorial representation was decided in the local slip
system coordinate frame (ban); if transformed to a different system the Kronecker delta
form may not be preserved.

We further note that it was the diagonal form of the correlation tensor which allowed
us to relate <Q,-(r)Qj (r+ Ar)) and p;(r) pj(r + Ar) by quasi-scalar operations. For example,
examine the screw-edge component of the two-point density (0s(r)o.(r + Ar)):

(05(r)0e(r + Ar)) = Gessps(r) ps(r + Ar) ...
+ Gieseps(r) pe(r + Ar) ...
+ Gseespe(r) ps(r + Ar) ...
+ Gseeee(r) pe(r + Ar)
(0s(M0e(r + Ar)) = g9 (Ar) ps(r) po (r + Ar) (53)

allowing the diagonal components of the tensor to be expressed by scalar division of the
corresponding components of the two density products. This division was then used to
define a protocorrelation density which was central in the evaluation of the correlation.
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Incorporation into continuum dislocation dynamics

It was noted that the most significant non-spatial dependence of the self-correlation
functions is on the convolution length L. This implies that any density-based continuum
treatment of dislocations is dependent on the length-scale used to describe the system.
The convolution length was used to force a distance of slow variation in the dislocation
density field, and as a result has a close analog in the mesh size used to describe the
dislocation density field in a spatially discretized continuum model. The findings imply
that the correlation functions should be scaled with respect to that mesh size. The con-
stant variation with respect to the mesh rather than the unscaled space will also allow for
simpler integration in finite-element schemes, as they scale identically to the underlying
shape functions.

Since it was observed that the self-correlation was stable with respect to the plastic
strain (and as a result, total dislocation density), it is only necessary to supply a single form
of the self-correlation fields at the beginning of a continuum simulation. It was initially
a concern that these correlation functions would vary over the course of a simulation,
greatly increasing the complexity as some sort of parallel simulation would have been
needed to model the evolution of the correlation functions themselves. However, this does
not seem to be the case. To incorporate these self-correlation functions, they must only
be specified as a sort of initial condition to the simulation.

These two general considerations aside, we would like to speculate on how these self-
correlations might be systematically incorporated into a continuum model. The most
significant influence would involve a revision of the Peach-Koehler interactions of the dis-
location densities. Treating this interaction as the conjugate configurational force to the
dislocation density allows us to express this force as follows:

_ 8B
Fi(r) = o)’ (54)
) — PN P oD 3.0
Fi(r) = 1+ pi(r) 5 pi ) Ejr — g (r —r')d°r. (55)
M i

If we assume that 8¢ /p; is vanishingly small, as we have already done in the statistical
homogeneity assumption, we can neglect this second term. We assert that we can neglect
this term, as part of the impetus of our formulation was to remove any relation between
the local density field and the correlation. As a result we are left with a simple integration:

== [ pede -, (56)
M

where we have incorporated the correlation as simply an alteration to the spatial depen-
dence of the ij interaction kernel:

Ej(Ar) = Ej(Arg™ (Ar). (57)

The effects due to the correlated regions (g — 1 # 0) would introduce terms inter-
preted elsewhere as back and friction stresses. However, this energy kernel alteration
circumvents the local density approximation (Zaiser 2015) which underpins such back
and friction stresses; such a local density assumption would be a poor approximation in
our formulation given the significant variation of the correlation functions up to and past
the convolution length. One may, however, perform the same expansion seen in Zaiser
(2015) if higher-order terms are kept. This would result in an energy functional dependent
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not only on the local mean-field density and the integral of the correlation function, but
also dependent on gradients of the density field and integral moments of the correlation.

Future work

Some questions regarding the self-correlation function remain open, and we would like
to discuss them here. The present work did not establish upper bounds to any of the
relations demonstrated. It was not shown whether the simple, linear scaling of the self-
correlation with convolution length breaks down at large convolution lengths. It is also
unknown whether the strain-independence of the self-correlation functions continues to
hold at larger strains.

The dependences on convolution length and plastic strain may break down for the same
reasons. The first possibility is that as the convolution length approaches the mean dis-
location spacing ,oé/ 2 (~1.5 pm in the simulations presented, considering the average
spacing between dislocations of like slip-system), the interactions being captured in the
correlation functions are qualitatively different. Whereas at small convolution lengths the
correlation functions capture line effects due to single dislocations, approaching the mean
dislocation spacing will capture multi-dislocation effects such as dislocation patterning.
We predict that upon convolution over lengths greater than this spacing, the correla-
tions would become stable with respect to convolution length. As the strain increases, the
length at which this transition might occur naturally decreases with the mean spacing.
The second possible reason these relations could change at higher strains would be the
introduction of lattice rotations. This would certainly affect the off-plane correlations as
cross-slip becomes more common and slip planes are activated closer together. We can,
however, assert that the relations demonstrated hold in the low-strain, low-convolution
length regime which we have examined here. Discrete dislocation dynamics simulations
might be run to slightly higher strain, but computation time needed to run a statistically
significant number of such simulations would increase. Correlations at finite strains might
necessitate other methods of investigation besides the discrete methods presented here.

Moreover, future work would be required to probe the reliability of this method of spa-
tial empirical averages of the protocorrelation product. Sampling bias towards certain
regions of the separation space were noted which are inherent to the line nature of the dis-
location objects. More nuanced methods than the brute force calculation of the average
two-point density presented here might be required, such as estimating the correlation
function from stress or energy fluctuations within a discrete dislocation configuration.

A great deal is left to learn even in the present regimes of strain and convolution length
by applying the formulation presented. For example, we have only considered the self-
correlation of dislocation densities on the same slip system. The cross-correlations, on
the other hand, contain information regarding the relative arrangement of different dislo-
cation ‘species. This is especially important information which could inform corrections
to dislocation reaction rates, which would in turn affect the strain hardening behavior of
the crystal.

From a higher level, it would be interesting to examine alternative ensembles where
different discrete fields are constrained. For example, one alternative to our line bun-
dle ensemble would be to consider a high-order ensemble created by constraining the
ensemble average either of lifted curves (Hochrainer 2007) or of their moments in the
angular space (Hochrainer 2015). In lieu of the spatial convolution used herein, an
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operation analogous to that used in Sandfeld and Po (2015) could be similarly used to
evaluate correlation functions in this alternative ensemble.

Conclusions

In this work, we have outlined a statistical framework which is implicit in any treatment of
continuum dislocation dynamics employing density fields. It is our hope that this under-
standing will catalyze the definition of alternative ensembles, where different fields are
constrained in their ensemble average. This allowed us to create a class of equivalent
observations of random variables which one wishes to examine in average and to leverage
basic statistical tools of empirical measurement to do so. It is our hope that this work will
enable similar operations in other ensembles.

More specifically, we have in this work defined a line bundle ensemble by constraining
a certain average of the discrete system to a spatial convolution of a singular dislocation
density. Through the means just discussed, we were able to identify a set of observations
which approach the correlation function in average.

This method was used to evaluate the three independent components of self-correlation
function—by which we refer to the correlation between density components on the same
slip system. These three independent components of the self-correlation functions were
found to be strongly planar functions, with most of the interesting behavior being found
at separation vectors falling in the slip plane. Moreover, the most significant factor affect-
ing the form of the correlation function was found to be the convolution length used to
define the mean field density: for lengths between 65 and 162 nm, the self-correlations are
similar up to a rescaling of space proportional to the convolution length. No change in the
correlation function was observed upon increase in total plastic strain—or equivalently,
the total dislocation content of the simulated volume.

he implications which these findings have on continuum dislocation dynamics were
discussed. It is the belief of the present authors that these correlation functions will pro-
vide an important correction to continuum dislocation dynamics models, introducing an
altered form of the stress field and dislocation reaction rates. There are many features of
these correlation functions which were beyond the scope of this particular document, but
the results shown serve to demonstrate the validity of this approach to the calculation
of correlation functions. It is our hope that this formulation will enable future studies of
dislocation interactions in continuum dislocation models.

Appendix A: Physical intuition of set-theoretic definition of ensembles

To aid in understanding the process of defining an ensemble, we will treat the Gibbs’
canonical ensemble in the set theoretic terms which have been presented. While
this is an equilibrium system as opposed to our (highly) nonequilibrium system of
interest, the intuition of spaces and level sets should be helpful nonetheless. Also,
although these considerations are for systems of point particles, an understanding of the
coarse-graining process will be helpful for understanding conceptually the dislocation

ensemble.

Spaces
Consider a system of N particles, each with positions r; € R and momenta p; € R3. In
this case, the microstate y of the system is a 6N-tuple:
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Yy = (rl:~~~7rNrp1’~~~’pN) (Al)

and I" represents the space of all such microstates, commonly referred to as the phase
space (Nolte 2010):

r :={(r1,...,rN,p1,...,pN) creR3 and p; eR3foralll <i §N} =R, (A2)

Now we consider the quintessential coarse graining operation which involves level sets
of the energy function. In this case, we consider as our coarse-graining function ¥ =
E(p;,...,pyn)- Since this returns a scalar, our coarse-grained space T is simply R. For
clarity, let us examine the form of this map:

U:l > T & E:R™N L5 R (A3)

N
p,I?
Vyel)=yeT & E(rl,...,rN,pl,...,pN);=Zz+m (A4)
i=1 ¢

The level sets of this map are referred to as macrostates I'¢:
Fei={y : E(y) =¢€}. (A5)

Notice that each of these macrostates represents a (hyper)sphere in the momentum por-
tion of the space while extending as a cylinder in the position portion. These are all
the equivalent configurations (microstates) which the particle system can occupy while
retaining the same kinetic energy. There is a considerable amount of confusion about
what such a macrostate map would look like in the case of dislocations, as the microstate
space is significantly more complex than RN,

Probabilities and measures

Now we wish to assign probabilities to subsets of I" (and I'¢). This requires two definitions:
o-algebras and measures. Broadly speaking, the former represents a “sufficiently large”
collection of subsets of a given space, while the latter represents a map from these subsets
to the real numbers.

A o-algebra on a set X is a collection of subsets of X which: 1) contains X, 2) is closed
under complement, and 3) is closed under countably infinite unions (Durrett 2019). For an
example of a 0-algebra, consider the Borel sets B on R: the smallest o-algebra containing
the open sets. We may note that these are all sets which are easily imagined: they can
be formed by unions of small intervals or of individual points. The definition of such a
collection might seem obscure, but it is mostly useful to define measures.

A measure u is a set function: it assigns non-negative real numbers to sets. The space of
sets which is its domain is a o-algebra, as it allows the statement of a measure’s defining
(and most useful) property; for non-overlapping sets A; (i.e. A; N A; = @ for all i # j), the
following decomposition must hold:

n (U Ai) = nAy. (A6)
i=1 i=1

Intuitively, this implies that a set will retain its measure regardless of how many pieces
we cut it into. This definition also carries two useful consequences: A C B implies that

u(A) < u(d); u(@) =0.
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Two examples will be useful here. Firstly, consider the standard volume measure on the
real numbers, referred to as the Lebesgue measure A. This begins by simply assigning a
map from all intervals to non-negative numbers:

A([a,b)) =b—aforb > a. (A7)

This can be extended to the Borel sets by representing open sets as countable unions
of such intervals and using the additive property from the definition of measures. The
Lebesgue measure forms the theoretical basis of all real analysis, including but not limited
to the rigorous definition of the integral.

The second important example is the probability measure. We will only here consider
probability measures with density functions. Still considering measures on the real num-
bers, define a function f : R — R such that [ f(x)dx = 1. We can then define the
measure of a set P(A) as:

P(A) = / f(x)dx. (A8)
A

This allows us to assign probabilities to sets. Notably, the fact that P(R) = 1 allows us to

measure complements as well:

P(AC) + P(A) = P(R)
P(A®) =1 — P(A) (A9)

Let us consider once again microcanonical ensemble. Representing again the states of
constant energy as I'¢, the fundamental assumption of statistical mechanics assigns all
microstates of these level sets an equal probability. This allows us to define a probability
measure as a map from a o-algebra on I'¢ to a non-negative number:

P.:0(¢) —[0,1]
fA dBNrd?)Np
If we use this probability measure, we are working in the microcanonical ensemble.
Another tactic involves constraining the ensemble average of our macrostate variable.
The canonical ensemble represents level sets of the temperature I'r (where T  (E) /kg),
assigning probabilities:

1 E@p)
Pr(A) = 7D /}; e’sT *Nrd®Np, (A11)

where Z(T) := fr e% d*Nrd®Np denotes the canonical partition function and kg denotes
the Boltzmann constant.

Defining this probability allows us to take averages as integration against this mea-
sure in the following way. The ensemble average of any quantity is now a function of the
map T

(A(r,p)) (T) := %ﬁA(r,p)e%dSNrdng (A12)

Now, all of the necessary machinery for the set-theoretic definition of ensembles and
coarse-graining has been shown for the canonical ensemble. For the present considera-
tion of dislocations, we assume the existence of this machinery so as to define ensemble
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averages similar to that of Eq. (A12). Intuition from the form of this machinery is then
used to identify a certain quantity (the protocorrelation density ¢(r)) which can be used
to construct independent measurements of the quantity being averaged.

Appendix B: A proof of the use of the Radon-Nikodym theorem

In this appendix we present a proof of the validity of the operations resulting in Eq. (18).
We will proceed in three stages. In the first, we will show that the measure formed by
each component of the single point vector density is absolutely continuous with respect
to the measure formed by the equivalent component of the mean-field density vector. We
will then show that this implies absolute continuity of the 2-point discrete measure with
respect to the product density measure. Lastly, we will show that the ensemble average
preserves absolute continuity as well as the Radon-Nikodym derivative.

Before we begin, we will introduce some notation. A measure u is absolutely continuous
with respect to another measure v if ;£t(A) = 0 implies v(A) = 0. This is denoted v K w.
A measure p is singular with respect to another measure v if there exists a set A such that
w(A) = 0 and v(A€) = 0. This is denoted v L v. All sets defined will be of the Borel o-
algebra on M (the crystal space containing the dislocations) or the smallest g-algebra on
M x M containing the exterior product of all Borel sets in M. All referenced theorems
can be found in the appendix of Durrett (2019).

Absolute continuity of the single point densities in a line bundle ensemble
Let us examine the two measures formed component-wise by the single-point vector

densities:
WA S M) = f d®r pi(r) (A13)
A
ve(A S M) = / Pro* (r) (A14)
A

By Hahn’s decomposition theorem (Durrett 2019), let us use the signed measure p to
decompose M as M U M_, where u(A4) > Oforall AL € M, and u(A-) < 0 for
al A_ € M_, with M, N M_ = @. Similarly, decompose M into M¥% and M¥~ by the
measure v, (A).

Lemma 1 The set of all dislocation microstates for which the sign of the ith component
of their tangent vector is opposite to the sign of the ith component of the mean-field density
vector, i.e. the set

Gr={Lel :re M{NM)UMEN M) (A15)
is of zero probability.

Proof We will prove this by contradiction. Suppose P(G,) > 0. We note that the
complement of G, is

GE={Lel :re MENMpUWMENM)) (A16)
Let us turn our eye to the following average:

(leiM1) = Hoi(r)!. (A17)
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This average is non-negative by Jensen’s inequality. If we can show that it is strictly posi-
tive, we will have a contradiction of the line bundle requirement in Eq. (11). Suppose that
r € M (the result for M_ is similar) and thus g; is non-positive in G, and non-negative
in G¢. This average then becomes

(o)1) — (0i(r)) = /G dP(L) l0i()] — 0i(r) + fG _dP(E) o) ~ 0i(1)
— / dP(L)oi(r) + / AP(L)0i(r) — 01(r)
G GC
) fG dP(L) |0i()| (AL8)

Since the Hahn decomposition of MX is non-unique up to all sets in M \ L, we can
choose M¥~ such that |g;(r)| > 0 almost surely in G,.. Thus, we obtain:

(o) — [oi() = 2 /G dP(L) |0i(r)|
> 2P(Gy) inf loi(r)]
LeG,
>0

This is a contradiction of the line bundle constraint. Therefore, the set of all dislocation
microstates which point in the opposite direction to the mean-field density vector is of
null probability, as desired. O

We now note by Jordan’s decomposition theorem (Durrett 2019) that we now have
w(A) = pni(A) — n—(A) where ui(A) = n(ANMy)and u—(A) = n(A N M-), where
“+ L p—. A similar operation can be performed for v (A) = v,y (A) —ve—(A). However,
a corollary of the above lemma ensures additional singularity properties.

Corollary 1 u (u_) is singular with respect to vo— (vo4) almost surely.

Proof It follows from lemma 1 that 4 (M_) = 0 and that v._ (M) = 0 almost surely.
O

Lebesgue’s decomposition theorem (Durrett 2019) states that given any measures u, v
we can decompose u as L = uac + Us, where v is absolutely continuous with respect
to uac and ws is singular with respect to v. This composition is unique up to a set of
pn-measure 0. The following lemma will leverage this decomposition to ensure absolute
continuity of the single point positive and negative measures.

Lemma 2 p4 () is absolutely continuous with respect to v (vo—) almost surely.

Proof By Lebesgue’s decomposition theorem, we may define u = pac + ps uniquely
up to a u-measue O set, where pac is absolutely continuous with respect to v.4 and us is
singular with respect to v, . However, we know that p_ is singular with respect to v
almost surely by the above corollary. The uniqueness implies that us = p—, and thus we
arrive at the result that ;1 is absolutely continuous to v almost surely. The same can
be shown for p_,v,_. O
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Product measures

We will now show that the product measures,
Hosoa(4 € Mox M) i= [ dra pir)py ), (A19)
A

Vexe(A S M x M) = / APrd’r Qi([') (r)Q;L)(r’) (A20)
A

inherit similar results as lemmas 1 and 2 from the single point measures.

Lemma 3 The set of all microstates for which the sign of the ijth component of their
tangent vector product is opposite to the sign of the ijth component of the mean-field density
vector product is of zero probability.

Proof Decompose M x M := Qinto Q4 = M4 x M) U(M_ x M_)and Q_ =
(M4 x M_) U (M- x Mj). Note that these unions are disjoint. The proof follows
similarly to lemma 2. O

ey _ + — _ JF —
Lemma 4 The Jordan decompositions pyroq = Poprod — Mprod and vpoxe =V, —Vogr

have the property vzx r < ,u;m gandv, . <L M;ro ; almost surely.

Proof the proto-measures on the collection of sets A x B where A, B € M defined as

1 od(A X B) = 14 (A)4 (B) + pi—(A)u (B)

HorodA X B) = (At (B) + 1 (A (B)
can be extended to measures on M x M satisfying the Jordan decomposition by use
of Carathéodory’s extension theorem (Durrett 2019). The mutual singularity property

desired then is inherited from the single point densities (i.e. consider the sets Q4 from
the proof of lemma 3). O

Effect of ensemble averaging

Theorem 1 The measure v - almost surely can be expressed in the following form:

Vexe(A) = / 89, YA pproa(drd®r) (A21)
A
where
(L) (L) /. »
oo Py N
g(’") rr)y=——7 "~ - ngﬁ) (r)Q;'C) (r') (A22)

pi(r) pi(r')

Proof The absolute continuity properfcy UZX r < u;“r ogand v, . <L Poprod (lemma 4)
implies the existence of the function g/ (r, r’)) by the Radon-Nikodym theorem. Since
both measures are obtained by integration of a density function in M x M, the function

is given by the scalar division of the two density functions. O

We now have in hand the random variable g (r, 7)) which we have referred to in the
text as the protocorrelation product. Only two things remain to be shown: a) that the
average of the two-point density measure:

Vprod(4 € M x M) := / Prd’r (0i(r)g;(r) (A23)
A
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is absolutely continuous with respect to the product measure fipr04 and b) that the Radon-
Nikodym derivative of vyr0q With respect to fiproq (the correlation function) is equal to
the ensemble average of the protocorrelation product in theorem 1.

Lemma 5 If (1,00 = O, it follows that vyroq = 0, L.e. Vprog <K Mprod-

Proof 1t follows by the linearity of the integral that if a random variable f = 0 almost
surely then (f ) = 0. It again requires decomposition into the positive and negative mea-
sures, but upon doing so one will still obtain that if pp04(A) = 0, we have seen that
vexo(A) = 0 almost surely. If vey £ (A) = 0 almost surely, then vprod(A) = (vexc(4)) =
0. O

Theorem 2 v,y may be expressed as

Vprod(A) = fA &Y (r, VYA pproa(drd’r) (A24)
with
2D (r, 1) = <§<z‘,/) (r, r')> (A25)

Proof 1t follows from lemma 5 that v,.0q can be expressed with a Radon-Nikodym
derivative as in the first equation, where
(0:(re;() s 8
veraat) = [ A8t aPra
P 4 pir)pr) P
d//Lprod (dgrdgr,)
= | ————=— [ dPoi(r)g;j(r)
/A pi(r) p;(r') P e

= | dpproadrd®y’ / ap2 o)
/A Horod rdTr) | D S o)

= fA <§(i’j) (r, r'))d//,pmd(de’rdgr').

Since this is true for all sets A € M x M, g (r,7') = <§(i’7) @r, v )) on all sets that have
Mprod 7 0. O

Thus we have demonstrated that any line bundle ensemble, not simply the convolution-
based ensemble which we considered in the present work, can be described with
correlations of the form defined in the subsection “Product measures and correlation”.

The influence of rotating the coordinate system is unclear. However, the safest way of
proceeding, which does not interfere with the definition of the protocorrelation prod-
uct is to assume g'”) represent the diagonal components of a fourth-rank tensor in a
privileged coordinate frame where these are calculated. The most obvious choice of such
a coordinate frame is the slip-system coordinate frame as it results in a planar dislo-
cation density vector requiring fewer non-zero components of g to describe the full
correlation behavior.
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