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Introduction

Plastic deformation by dislocation motion is generally associated with dislocation pat-
terning, leading to formation of heterogeneous dislocation arrangements. If multiple
slip systems are active, dislocations form cellular structures where dislocation depleted
‘cell interiors’ are surrounded by dislocation rich ‘cell walls’ (Szekely et al. 2002).
Such cell structures show an almost universal scaling behavior (law of similitude’)
which is independent of loading conditions, material or temperature: the characteris-
tic pattern wavelength A is proportional to the mean dislocation spacing (mds) p, 172
where pp is the spatially averaged dislocation density, and inversely proportional to the
applied stress (Rudolph 2005; Sauzay and Kubin 2011): A o p, 12« 1/Text- This
behavior results directly from fundamental scaling invariance properties of dislocation
systems as discussed by Zaiser and Sandfeld (2014). Recent investigations (Oudriss and

Feaugas 2016 indicate an even stronger form of the similitude principle according to
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which the components (cell walls, cell interiors) of cell structures obey the similitude prin-
ciple separately, such that the wall thickness A, is related to the wall dislocation density
by Aw = Cpw 172 and the cell dislocation density to the cell size A, = C,o@l/ 2, in such
a manner that the proportionality coefficients C are identical. We note in passing that,
under very specific conditions which may be the exception rather than the rule (namely,
deformation of fcc crystals with the loading axis oriented along a [100] direction), frac-
tal cell patterns with a wide spectrum of length scales may emerge (Hahner et al. 1998).
However, even in these exceptional cases, the length scales defined by the upper and
lower boundaries of the fractal scaling regime of cell sizes obey the “law of similitude”
(Zaiser 1998; Hahner and Zaiser 1998).

Numerous models have been proposed for dislocation cell structure formation. Early
models often relied on phenomenological similarities between dislocation patterns and
other patterning phenomena, and used these analogies as a motivation to adopt equations
drawn from other realms of science (e.g. spinodal decomposition (Holt 1970) and chem-
ical patterning as described by reaction-diffusion models (Walgraef and Aifantis 1985)).
These equations were adapted to dislocations in a manner that, seen with malevolent
eyes, might be envisaged as a mere re-labeling exercise. It is not easy to see how, if at all,
such models account for the specifics of dislocation topology, dislocation motion and dis-
location interactions - for instance, it is immediately evident that the fundamental mode
of dislocation motion under stress is not diffusion but directed glide. In recent years,
efforts have been made to match chemical patterning inspired models more closely to
actual dislocation processes, by distinguishing slip systems (Pontes et al. 2006) and pro-
viding physically motivated reaction terms (Aoyagi et al. 2013). However, in all these
models the problem remains that diffusion terms do not appropriately describe the glide
of dislocations, which needs to be described by transport terms that are of a hydrody-
namic rather than of a diffusion-like character, with important consequences to the nature
of the emergent instabilities.

Discrete dislocation dynamics (DDD) simulation provides a powerful alternative to phe-
nomenological ad-hoc models. DDD simulations faithfully represent the kinematics and
interactions of dislocations and should be well suited for modelling dislocation pattern
formation. While existing simulations (Madec et al. 2002; Hussein and El-Awady 2016)
indicate that simulations of systems sufficiently large to allow for a quantitative investi-
gation of pattern morphology alongside a reliable determination of pattern wavelengths
may still be challenging, such limitations will be overcome with time simply due to the
expected increase in available computing power.

However, from an epistemological point of view the ability to provide a more or less
faithful in vitro simulation of a real process should not be confounded with understand-
ing: a sufficiently complex simulation may encompass, besides essential, a large amount
of redundant features and it may not be easy to decide which features of the collective
dynamics are at the core of a collective phenomenon such as dislocation cell structure for-
mation, and which are incidental to it. Rather than pursuing accuracy in detail, our own
modelling strategy therefore is heavily poised towards simplicity — while at the same time
we make sure that the most essential kinematic features and the structure of the interac-
tions are represented correctly. Mathematical simplicity of the model allows us to obtain
some results in an analytical or semi-analytical manner, and renders the essential features
of the dynamics more transparent. To this end we rely on a most basic version of den-
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sity based dislocation dynamics in multiple-slip conditions. We start from the model used
by Zaiser, Groma and co-workers (Groma et al. 2016; Wu et al. 2018) for analysing the
conditions for pattern formation in single slip, and generalize this to symmetrical double
slip along lines proposed in earlier work of Groma and co-workers (Yefimov and Van der
Giessen 2005; Limkumnerd and der Giessen 2008). This framework not only provides us
with some degree of analytical tractability but also with a solid theoretical foundation: The
equations we use have been rigorously derived from statistical averaging of the underlying
discrete dynamics (Groma et al. 2003; Valdenaire et al. 2016) and can be related via vari-
ational calculus to the statistically averaged energy functional of the dislocation system
(Zaiser 2015; Groma et al. 2016). Moreover, predictions obtained with these equations for
size-dependent deformation in small samples and/or constrained geometries have been
shown to be in quantitative agreement with discrete dislocation dynamics simulations
(Yefimov et al. 2004; Yefimov and Van der Giessen 2005). This makes us confident that
the mathematical framework we used indeed captures essential features of dislocation
dynamics under load.

We note that other, more complex versions of density-based continuum dislocation
dynamics have been applied to the patterning problem. Some of these approaches con-
sider geometrically necessary dislocations only (Limkumnerd and Sethna 2008; Chen et al.
2013). However, during the early stages of deformation the dislocations in the cell walls
have near-zero net Burgers vector: they are predominantly not geometrically necessary
dislocations. Application of such models to early stages of cell structure formation is
therefore possible only if the spatial resolution is well below the actual dislocation spac-
ing such that Burgers vectors do not cancel out. If one makes this numerical effort the
results can be impressive (Xia and El-Azab 2015) and capture dislocation processes in
three-dimensional dislocation patterns in detail (Lin and El-Azab 2020). A more coarse
grained model that allows for co-existence of dislocations of different Burgers vector in
the elementary volume but nevertheless captures effects of three-dimensional curvature
was proposed by Sandfeld and Zaiser (2015). An interesting work was recently published
by Grilli et al. (2018). These authors consider two models which allow for dislocations
of different Burgers vector in the same elementary volume, which are described by a set
of densities obeying transport equations and applied to labyrinth-like patterns emerging
under cyclic loading. These works are conceputally more complex than the present one,
as they consider three-dimensionally curved dislocations (Sandfeld and Zaiser 2015), dis-
tinguish various orientations (Grilli et al. 2018), and include essentially three-dimensional
processes such as junction formation (Grilli et al. 2018) and cross slip (Xia and El-Azab
2015). While these approaches are interesting in their own right, we demonstrate in the
present paper that the added complexity is actually not essential for cell structure for-
mation or dislocation patterning as such. In the following we first briefly introduce the
governing equations of our model and then provide a stability analysis that allows us to
establish necessary conditions for cell pattern formation. We show the results of numer-
ical simulations of the evolution equations and compare our findings to experimental
data. Finally we provide a conclusion where we discuss implications of our findings in
view of some commonly held ideas regarding the nature of dislocation patterns and the
requirements for their formation.
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Model equations

We consider a crystal deforming in plane strain where two orthogonal slip systems are
active. System 1 has Burgers vector b; = be, and slip plane normal n; = ey, and system 2
has Burgers vector by = bey and slip plane normal n; = e,. The shear strains on the two
slip systems are denoted as y; and y». The plastic distortion is then given by

B =yi[ey®ex] + 1 [ex®ey]. (1)

We define the plastic strain €P' and plastic rotation ®P' as the symmetric and anti-
symmetric parts of 8P, These are given by

Y
epl: E[ey®ex+ex®ey]; (2)
pl w
@ :§[ey®ex—ex®ey]. (3)

where y = y1 + ys and w = y; — y».

Both slip systems contain straight parallel edge dislocations gliding in the directions of
the respective Burgers vectors. We assume that each system contains equal numbers of
positive and negative dislocations with the corresponding dislocation densities denoted
as ,oli/2 where the upper label distinguishes positive and negative dislocations, and the
lower label distinguishes the two slip systems. Positive dislocations move under the action
of a positive resolved shear stress in the positive Burgers vector directions, and negative
dislocations move under the same shear stress in the negative Burgers vector directions,
vli/2 = ivli/zbl 2/b where vljt/2 are scalar velocities.

In the spirit of defining a minimal model, we neglect dislocation reactions (which
anyway, for energetic reasons, are not expected to yield stable products), dislocation mul-
tiplication and annihilation. The dislocation densities are thus conserved quantities which
obey the continuity equations

8;0+

= o),

90—

% =0 (1 V1),

dp;

Ti = _3y(/);r";r)r

ap, _

Tizay(foz V2>' (4)

The dislocation velocities for these four types of dislocations are assumed to be lin-
early proportional to respective, effective shear stresses 7,° where the index i € {1,2}
distinguishes the two slip systems and s € {—1,1} distinguishes the two signs of the
dislocations:

G0 = DTG (5)

In these equations, B is the dislocation drag coefficient. A closed mathematical model
is then specified by relating the effective shear stresses to the dislocation densities. In
line with the single-slip model of Groma and co-workers (Groma et al. 2016; Wu et al.
2018), we consider the effective driving stresses 7;5 to result from the combination of

s,dr sf,

sign-dependent local driving stresses ;""" and friction stresses 7;”:
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(6)

; ,d ,d £ : ,d f

7 _ | sien (Tf r) (ltf =1 ) it |57 =" >0
' 0 otherwise

The driving stresses combine the resolved shear stress t; in the respective slip system with

corrections describing short-range dislocation interactions associated with the mutual

arrangement of individual dislocations (dislocation correlations) according to

rfsr =1+ 1+ st (7)

We discuss the three stress contributions in this equation separately:

1 The resolved shear stress 7; arises from the superposition of stresses caused by
external tractions and internal stresses associated with the plastic eigenstrains — in
other words, it is found by solving a standard elastic-plastic problem. The
considered slip geometry has the peculiarity that this stress is the same in both slip
systems and equals the xy component of the stress tensor, 11 = 72 = 0. In our
calculations, we consider a bulk system with periodic boundary conditions and
calculate this stress from the plastic strain y using a Green’s function formalism
(Zaiser and Moretti 2005; Wu et al. 2018):

T(F) = Text — / y(r)G (r—r')d* (8)

where ey is a spatially constant external stress arising from remote tractions
acting on the infinite contour, and G is an interaction kernel function with the
Fourier transform
PR
a(l—v) k*

G is the shear modulus of the material, v is Poisson’s ratio, and k, and k; are

= GT (k). )

components of the Fourier wave-vector with modulus k.
2 The ‘back stresses’ rib stem from the mutual correlation of dislocations of the same
sign and counter-act their accumulation. For single slip on some slip system i the

back stress is given by
D
() = =G (biV)wilr), (10)

where D is a non-dimensional factor of the order of unity and p = p* + p~ is the
total dislocation density on the considered slip system. The local excess density «;
is given by the difference of positive and negative dislocation densities and relates
to the slip gradient on the slip system i via
1
b2
For multiple slip situations as considered here, Linkumnerd et al. (2008) use a

Ki=p; —p; =——biVyi (11)

statistical-mechanical model of the density cross correlation functions to derive
instead of Eq. 10 the superposition relations

©P(r)=-GD)_
j

CO

s 0

% (b:.V)i(r), (12)
pj
where 6; are the angles between the Burgers vectors (slip directions) of slip system
pairs. For the geometry considered here, cos 6;; = §;; and hence, Egs. (10) and (12)
are equivalent.
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3 Accordingly, we consider the ‘diffusion stresses’ rl.d to be given by
d 1
T (r) = —GA;(bi.V)pi(r), (13)
l

where A is another nondimensional factor of the order of unity. The terminology
‘diffusion stresses’ is used because this stress, if inserted via Egs. (5), (6), (7) into the
transport equations Eq. (4), gives rise to diffusion-like contributions to the
evolution of the total dislocation densities p;.

All three stress contributions can be derived from the energy functional of the disloca-
tion system, as discussed in detail by Groma et al. (2016), hence, they are associated with
stored energy contributions.

It remains to specify the friction-like stresses t; ! These stresses are of a different nature
from the driving stresses as they are associated with dissipated, not with stored energy
contributions. These stresses enter into energy-based formalisms in terms of a non-trivial,
nonlinear mobility function with a mobility threshold (Groma et al. 2016). In a force-
based formalism, they can be derived by direct statistical averaging of the resolved shear
stresses acting on the dislocations, as shown by Valdenaire et al. (2016). For single slip,
these authors provide an expression which specifies the general functional form of the
friction stresses in agreement with generic scaling invariance properties of dislocation
systems (Sandfeld and Zaiser 2015). We write their expression in the form

v = ¢° (&, Texts L) Gb/P, (14)

where p is the total dislocation density. The scaling function ¢ depends on the nondi-
mensional variables I = L./p where L is an averaging length, kK = «/p and Texy =
Text/ (Gbﬁ). We discuss these three dependencies separately:

e The dependence of ¢* on averaging length is a feature which we will discuss in more
detail in another publication. Here we merely note that, in the limit L — 0 (i.e. no
averaging), all dislocations are captured separately and therefore the stress v contains
complete information about the dislocation related internal stress field. In that case,
the friction stress is superfluous and accordingly the ¢* go to zero. In the opposite
limit, L — o0, the functions ¢* approach a constant asymptotic value « as the friction
stress reduces to the conventional Taylor expression for the dislocation related
macroscopic flow stress. Here we assume that our averaging length is sufficiently
large, such that an explicit dependency of ¢* on L needs not to be taken into account.

e The ¢° may also depend explicitly on the normalized stress Tex; as shown by
Valdenaire, this dependency possesses a maximum which defines the macroscopic
flow stress. Here we consider deformation at constant external stress and assume
that this stress is sufficiently close to the flow stress (ie, ¢* is close to its maximum),
in which case variations of ¢* associated with variations of Text can be neglected in
linear approximation.

e Finally, the dependency on & accounts for the fact that excess dislocations cannot be
pinned by dislocations of the same slip system (the net force on the excess cannot
become zero). For this dependency both Valdenaire et. al. 2016 and Groma et. al.
2016 use the form ¢* o (1 — sk) which ensures that the friction stress vanishes when
only dislocations of one sign are present.
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For multiple slip, the form of the friction stress needs to be modified because dislocations
of more than one slip system need to be taken into account. In this case the most general
functional form consistent with scaling is given by

£ S

Tf = d)LS (Kj) p]r Text,L) Gb\/_’ (15)
where K; = «j/p and p; = p;j/p. In generalization of the above arguments we use for
the scaling function the specific form ¢; = o (1 — sk;/0;) Zj Hjjp; where the latent
hardening matrix Hj; describes slip system interactions. For the present system, the

resolved shear stresses induced by a dislocation in both slip systems are equal, hence, it is
reasonable to set H;; = Hj; = 1 leading to

‘L'if,s = aGb./p <1 — sKl> . (16)

Pi
Assembling all stress contributions, we find that the four dislocation density species
under consideration fulfill, under the assumption that the local effective stress is positive
and the system is everywhere in the flowing phase, the respective continuity equations

api, 1
825 = —Esbi.V {pi,s [rm - / Xi:%‘ (r)G (r—r)a®

G .
= o biV [Dei+ s4p] — aGh 1> i (1 - s;’> . (17)
i is i

The strains y; evolve according to

dyi b? ’ N 2.7
EZEZ Pi,s Text_/ZVi(r)g(r_r)dr

G .
— bV [Dai +sApi] —aGh | pi <l—sKl> . (18)
pi e pi
1,S

Before we proceed to analyze the model equations, it is important to comment on the

nature and meaning of the non-dimensional parameters A, D, and o which enter the
model in addition to the physical constants G, b, v, and the drag coefficient B. All three
parameters A, D, and « characterize correlations in the positions of individual disloca-
tions and can in principle be evaluated in terms of integrals over dislocation-dislocation
correlation functions, see their derivations in Refs. (Groma et al. 2003; Groma et al. 2016;
Limkumnerd and der Giessen 2008; Valdenaire et al. 2016). All these parameters are of
the same order of magnitude as they characterize the arrangement of close dislocations
whose positions, owing to their mutual interactions, are strongly correlated. Specifically,
« is proportional to the characteristic spacing of dislocations that have trapped each other
into dipolar or multipolar configurations, measured in units of the typical spacing of dis-
locations of the same slip system in the surrounding of a given spatial point — of course,
as such « is nothing but the well known Taylor factor. If the dislocation arrangement is
thought of as an assembly of isolated dipoles of height %, then « = (87 (1 — v) (hﬁ),
but in more general circumstances, this factor needs to be modified to account for the
influence of dislocations surrounding the dipole. The parameters A and D have an anal-
ogous interpretation, but ‘probe’ different aspects of short-range interactions: While «
mainly captures the trapping effect of dipole-like interactions, D characterizes the inter-
actions between dislocations of the same sign in piled-up configurations, which cause a
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net stress if there is a gradient in the ‘geometrically necessary’ density «. Finally, A which
controls the ‘diffusion stress’ accounts for the fact that dipoles and multipoles have finite
extension, such that dislocation density cannot localize down to arbitrary narrow scales.
In summary, all three factors are proportional to spacings of individual dislocations, with
o mainly characterizing the spacing of slip planes of adjacent dislocations, D spacing of
dislocations of the same sign in piled up configurations, and A the extension of dipoles
and multipoles in glide direction.

Understanding the physical nature of the constants «, D, A is also beneficial for the
physical interpretation of the respective stress contributions. Breaking of dipoles and
formation of new ones is a dissipative process that occurs as soon as the local stress
exceeds the dipole breaking stress, hence, the associated stress contribution has friction-
like characteristics. Piling up dislocations against an obstacle, by contrast, leads to storage
of energy that can be recovered if the stress causing the pile up is removed or reversed,
hence, the associated energy contribution enters an appropriately averaged internal
energy functional. The same is true for the work expended in compressing or expand-
ing dipolar and multipolar configurations. It is in line with these intuitive arguments
that, upon formal statistical averaging of the elastic energy of a dislocation system (Zaiser
2015), the resulting density based functional allows to recover through variational calcu-
lus both the ‘back stress’ and the ‘diffusion stress’ but not the ‘friction stress’ (Groma et al.
2016).

Stability analysis

Reference state

We consider pattern formation first in an analytical framework where we focus on
infinitesimal perturbations of a spatially homogeneous reference state where p;s =
po/4 Y{i,s} and y; = yo/2 V i. At this stage we envisage loading by a temporally con-
stant applied stress Text. Depending on the level of stress, two situations need to be
distinguished: (i) If texx < @Gb,/po then all velocities in the reference state are zero,
hence, y = 0 is constant in space and time and p;s = po/4 is a stationary solution of
the evolution equations that is stable with respect to infinitesimal perturbations. (ii) If
Text > aGb,/po we are in a flowing phase. In this case the dislocations move with homo-
geneous and stationary velocity vo = (b/B) (rext - aGbﬁ) and the slip system strains
increase linearly in time, d;y; = Y0/2 = pobvo/2. The stability of this flowing state is
analyzed in the following.

In our analysis we have a choice of variables. Instead of the four densities p;; we may
use the total and excess dislocation densities on the two slip systems, p; = Y p;s and
ki = Y . Spis. Furthermore, instead of the excess dislocation densities we may alternatively
consider the slip variables y; which relate to the former via k; = b;Vy; /b?. This is the
choice we make, i.e., we consider the problem in terms of the four variables p;, y;, i € {1,2}.

Dimensionless scaling

In the following we switch to a dimensionless formulation which helps to see the influence
of all model constituents more easily. Only the final results are stated here, for detailed
information and derivations see Refs. (Zaiser and Sandfeld 2014; Sandfeld and Zaiser
2015). We define the scaling relations between quantities with physical units and their
dimensionless counterparts (indicated by a tilde) as t = C;T (for stresses), p* = C,p*
(for dislocation densities), x = Cyx (for lengths), and y = C,, y, with the scaling factors
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C: =aGby/po, Cp=po, Cx= ,00_1/2, C, = b,oéﬂ. (19)

Furthermore, we scale velocities in units of C, = bC; /B, which implies a scaling for time
according to t = C,t with C; = C,/C,. In non-dimensional form the equations of motion

become

ap;, . ~
5, = Vi {pi,s [rext — f ;m () T(r —rHd*
1 ~ ~ Ki
-~V [Dxi +SA,0,-] — 1> s (1 +s) , (20)
Pi P 0i
0V; N ~
37);1 = ; :pi,s |:Text - / ; Vi (r/) T(r— r/)er/

1 ~ ~ Ki
- -V, [qu + sA,o,'] — Z Dis <1 + sl> , (21)
Pi is Pi

where we have dropped the tildes on all variables and introduced the notations V; =
(b;.V/b), D = D/a, and A = A/a. The scaled stress kernel is given by T = T/ (apo) and
has in scaled variables (k — k/ \/,o_o) the Fourier transform

- 1 kK2 K2k
T (k) = 2 =Ty— .
(2 +x2)

=Y (k2 4+ a2)

Linearized evolution equations
We now write down the equations of evolution for small perturbations 8p;, 8y; of our
reference state p;o = 1/2,y;0 = yo/2. In linear approximation these perturbations are

given by
08p; ~
S = V2 (Abpi + rexdyi) (23)
a8y; 1
9t = (Text — 1) 8p0; — ; E] 6:0]'

+ DV?S;/L» — ,0? / Z 8y (r’) T (r — r’) &%, (24)
j

Defining the state vector ¢ = [8p1,8y1,8p2,8y2] and using the Fourier Ansatz 8¢ =
q (k) exp (ik.r), we write these equations in matrix form:

0

3.4 (k) = M.q (k) (25)

t

with
—Ak% —Textkg 0 0
[ B R TR

M = = ) (26)
0 0 —Aky —rextky
_12 I te — 3 —1 — DR

We now first investigate two simple cases where the eigenvalues can be computed
analytically in a straightforward manner.

Page 9 of 22
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Symmetrical case
We first study the eigenvectors and eigenvalues of this matrix for the symmetrical case
ky =ky = k/ +/2. The matrix M simplifies to

_Ap2 e
2/( 2 k ) 0 0
To D2 1 T,
Mo | i % -3k -1 —% 27)
0 0 —4Kr —Tstg?
_1 _T _ 5 _To _Dy2
1 8 Text —3 —§ — 2K

The eigenvectors of this matrix have the structure ¢, = £q, where ¢; = [601,5y1],¢, =

«w »

[602,8y2]. We first consider the “-” case. The matrix equation then reduces to M~ .q; =

A~ g, where
A2 Text 1.2
_Ap2 Ty
M-=| 20 T2 (28)
Text — 1 —jk
The eigenvalues fulfil the characteristic equation
A D —1
(—2k2 - A) (—2k2 - A) + %/ﬁ =0 (29)

Since Text > 1 in the flowing phase and both A and D are positive, both roots of this
equation have negative real parts for all k and zex, hence, no instability can occur. In the

“«w »

+” case we get MT.q; = ATq, where

_ | AR Tl
o= | T (50)
Text — 5 78 — Dk

The eigenvalues then fulfil the characteristic equation

A b T, "
(—k2 — A) (—Dk2 -0 A*) 4 e (rext - 3) kK =0. (31)
2 2 8 2 2

An unstable wavelength band may in that case occur if 1 < 7ey and 87ext (3/2 — Text) >

ToA. This band is comprised between the wavelengths k = 0 and k = kE” where

(32)

(/([11])2 o 8Text (3/2 — Text) — TOA
¢ 4AD
Fluctuations along the cube axis

Next we consider the case where the fluctuation wave vectors are aligned with the x axis,
kx =k, ky = 0 (the opposite case is symmetry equivalent). The matrix M simplifies to

—AK?  —Teqk® 0 0
Text — 5 —DK? -1 0
0 0 0 0

1 5
—2 0 Text — 0

M = (33)

The characteristic equation is obtained by setting the determinant of the matrix M — A1
to zero. Expanding the determinant with respect to the last column gives the straightfor-
ward result

A2 [(—Ak2 - A—) (=DK% = A7) + Text (Text — 5/4) k2] —o. (34)

This characteristic equation is, but for the factor A2 and the slightly different scaling,
similar to the characteristic equation obtained for instabilities on a single slip system,

Page 10 of 22
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hence, the results of Groma et al. (2016) and Wu et al. (2018) can be transferred. An
unstable wavelength band occurs if 1 < Tex and text < 5/4. This band is comprised
between the wavelengths k = 0 and k = k£1°] where
(kyo])2 _ Text (5/~4~— Text).
AD
Curves A (k) are shown in Fig. 1, for fluctuations in the glide directions and along the

(35)

slip system symmetry axis. The instability occurs for fluctuations aligned with the slip sys-
tems, the wavevector of maximum amplification corresponds, for the parameters given in
the Figure, to a wavelength of about 12 mean dislocation spacings. Regarding the param-
eter dependence of the wavelength, the results of Wu et al. (2018) carry over: the critical
wavelength increases with A and D in approximately linear proportion.

Condition for instability: physical interpretation
Since instability occurs first in [10] directions, the condition for instability to occur is, in
non-dimensional representation, simply given by Text < 5/4 or, in dimensional units,

Text < (5/4)aGb./po. (36)

To understand the physical nature of this condition, we define the total (scalar) flux of
dislocations on slip system i in the homogeneous reference state as

. . b
ji=vi/b= stpi,sw,s = pig | Text = aGb /2} pil. (37)

The derivative of the total flux j; with respect to the slip system dislocation density p; is

then given by
dji b Pi
—_— == —aGb i1 . 38
5o, B | /; pi [ oy (38)
0.2 . ; :

.

©

=
L

-0.24 ® [100], SIM o

Maximum Non-zero Eigenvalue

——[100], LSA \
o [110], SIM |
——[110], LSA \
-0.3 . . — 5
0.0 0.5 1.0 1.5 2.0 -1.00 -0.50

wave-vector modulus k

Fig. 1 Left: Growth rates of fluctuations; dashed blue line: growth rate for wave-vectors aligned with the [10]
lattice directions according to linear stability analysis (LSA), blue line: growth rate for fluctuations near [10],
black line: growth rate for wave-vectors flaligned with the [11] lattice directions; discrete symbols: growth
rates deduced from Fourier modes of the numerical solution for a Gaussian white noise as initial condition.
Right: growth rates for fluctuations according to LSA over the entire domain of wave vectors. Parameters:
A=D=01a =03, 1 = 1.1;
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For the present case where p; = pp/2 we thus find that the dislocation density derivative
of the total dislocation flux turns negative when 7ext < 5/4aGb,/po which is precisely our
instability criterion. We are, hence, dealing with a variant of a basic instability that has
long been studied in hydrodynamic models of traffic flow, see e.g. Gerlough and Huber
(1975). Importantly, no other terms in the evolution equation but the flux term and the
friction-like stresses - which represent the isotropic hardening due to dislocation den-
sity accumulation - are needed to observe this instability which is, hence, a quite generic

feature of dislocation dynamics.

Numerical analysis

We have performed a numerical analysis of the evolution equations for two different types
of initial conditions, namely (i) a spatially uncorrelated Gaussian white noise of small
amplitude and (ii) a localized small perturbation in the origin of the coordinate system.
We implement periodic boundary conditions in x and y for the stresses and for the dis-
location fluxes on the two slip systems. For the stress evaluation we use a Finite Element
framework with periodic displacement boundary conditions. As initial conditions we use
pE(r,t) = po/2+€8p™(r,t) where € < 1and we consider two types of perturbation Sp*:
(i) a Gaussian white noise of unit amplitude and (2) a localized Gaussian ‘blob’ of width
I=py 12 Jocated at the center of the simulation cell. The system is loaded by imposing
a constant external stress and keeping it fixed throughout the simulation. As default we
use in the following a non-dimensional external stress value of Text = 1.1 which is within
the instability regime. We note that reference simulations with Gaussian white noise for
Text = 1.4, i.e. outside the instability regime, show no patterning; the initial heterogeneity
in this case flattens out.

The time evolution of the Fourier coefficients of the emergent patterns is shown in
Fig. 2 for both cases. The emergent patterns are dominated by fluctuations with wave-
vectors oriented along the symmetry equivalent [01] and [10] lattice directions. From the
initial growth rates of the discrete Fourier modes p (k) we deduce growth factors defined
as A(k) = Alnp(k)/At. Comparison with the analytical predictions for fluctuations

/4 i AT =1 I
10'=
/8 < /8
3
- WE -
= w= =
—/8 0= —7/8
/4 100 /4 100 /4 100
//77r/477r/8 0 7/8 w/4 0 /77r/-'177r/8 0 7/8 w/4 0 /77r/477r/8 0 7/8 w/4 0
ke ki ke
/4 M /4 M /4 -
10t = 10t = 10t =
/8 : /8 z /8 :
3 3 3
R 10°% - 10‘5 R 10°%
= = = =
= wnw= = w= = 0=
_ 5 _ - <
/8 10T /s 0% /8 10T
—r/4 0 —7/4 0 —/4 _ i 0
/—71'/4—71'/8 0 7/8 m/4 10 /—7.'/4—7\'/8 0 w/8 w/4 10 /—71'/4—71'/8 0 7/8 m/4 10
kj; k:r kl?
Fig. 2 Time evolution of Fourier patterns p(k, t); top: patterns growing from uncorrelated Gaussian noise
(initial condition (i)), bottom: patterns growing from a single localized perturbation (initial condition (ii));
parameters as in Fig. 1
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oriented along [10] and [11] lattice directions shows good agreement. The wavelengths
of the fully developed patterns match closely (within 20%) the predictions of linear sta-
bility analysis for the wavelength of the mode with maximum amplification. At longer
times, satellites appear at multiples of the dominant wavelength and the Fourier spectrum
assumes a grid-like pattern, indicating a non-sinusoidal periodic pattern with long-range
order. While the initial growth rates of Fourier components are similar for localized
and distributed perturbations, the ordering tendency seems to be more pronounced if
patterning starts from a single localized perturbation (Fig. 2, bottom).

The mode of growth depends on the initial conditions, see Fig. 3: in case of a spatially
distributed noise the emergent patterns have a crossed stripe-like character. If we use a
localized perturbation as initial condition, two perpendicular walls start growing from the

Gaussian white noise

Localized 'blob'
t=160] &

K/ po

1.4
0.7

0.7

14012

Fig. 3 Time evolution of spatial patterns p(r,t) and « (r, t) ; top: patterns growing from uncorrelated
Gaussian noise (initial condition (i), bottom: patterns growing from a single localized perturbation (initial
condition (ii)); parameters: D = A = 0.2, Texr = 1.1, these parameters are chosen to match experimental
observations shown in Fig. 7
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perturbation and then the wall pattern spreads into a grid-like pattern. The characteristic
wavelength of the emergent pattern is, however, independent of the growth mode.

An interesting question concerns the applicability (or not) of the well-known composite
model to our simulation data. According to the composite model as originally formu-
lated by Mughrabi (1983), long-range internal stresses associated with slip heterogeneities
develop in such a manner as to homogenize deformation. Regions of enhanced disloca-
tion density (cell walls) have a higher local flow stress, accordingly, plastic slip is reduced
in these regions. In regions of reduced dislocation density, the flow stress is reduced
and slip is enhanced. The compatility requirements between both kinds of regions imply
presence of geometrically necessary dislocations which, so the model, create long range
internal stresses that offset the flow stress differences. Ultimately, in quasi-static defor-
mation one expects the local stress to everywhere match the local flow (friction) stress
such that deformation can then proceed in a compatible manner:

7(r) —aGby/p(r) =0, &t =aGbs(\/p). (39)

Note that this relation is expected to hold independent of the length scale of the pattern:
The ‘composite’ of the original composite model is considered in the spirit of classical
composite mechanics which does not know about size effects. The composite model has
some important corollaries. For instance, it can be seen immediately that patterning does,
in the composite model, always lead to softening (reduction of flow stress) in comparison
with the homogeneous reference state. Because of the triangular inequality, spatial aver-
ages (denoted by (....)) of the dislocation density fulfill the relation (,/p) < +/{(p). Thus,
the average flow stress € Gb(,/p) is less than the flow stress «Gb./(p)of a homogeneous
reference arrangement of density (p). This finding is supposed to hold independently of
the morphology or of the length scale of the heterogeneous patterns (Zaiser 1998).
Looking at the strain patterns in our simulations we find that they match the expecta-
tions: Strain is increased in the cell interiors and decreased in the cell walls. If we look
at the internal stress patterns in our simulations, however, a more complex behavior is
found. The internal stresses do not exhibit a strict correlation with the plastic strain,
or with the dislocation density, see Figs. 4 and 5. To quantify the deviation from the
composite model, we first formulate the composite model prediction: according to the
composite model (taken in the quasi-static limit), compatible plastic flow is ensured by
the fact that the local stress adjusts everywhere to exactly match the local flow stress:
1(r) = aGb/p(r). From this observation, one can derive the correlation between the
local internal stress Tint(r) = T(r) — Text and the local flow stress. Using (tint) = 0, one
obtains that (Tintf) = (8rf2) where §tr = 7r— < t¢). Hence, the correlation is strictly
positive: ‘Hard’ regions of above-average local flow stress experience positive internal
stress and ‘soft’ regions of below-average flow stress experience negative internal stress.

In non-dimensional variables we can express this relation as

() — T VP _
L= (/p()?

Figure 6 however shows that, in our model simulation, a positive correlation between the

(40)

local stress and the square root of local dislocation density exists only during the initial
stage of patterning. Even then, the magnitude of the correlation falls significantly below
the value expected according to Eq. (40). Moreover, the correlation actually decreases as
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Fig. 4 Time evolution of the spatial patterns of the local strain fluctuation y (r, t) — (y) top: patterns growing
from uncorrelated Gaussian noise (initial condition (i), bottom: patterns growing from a single localized
perturbation (initial condition (ii)); parameters as in Fig. 3

patterns are formed and ultimately drops to zero. For patterns emerging from a local-
ized perturbation, there is an additional complication since the correlation oscillates as
walls are formed sequentially. Either way, in the fully developed pattern there is no appre-
ciable correlation between local internal stress and local flow stress (or square root of
local dislocation density). This raises the intriguing question how the patterns can deform
compatibly.

The shortfall is made up by the length scale dependent stress contributions rib (r) and
td(r) which may be considered non-local, strain and dislocation density gradient depen-
dent generalizations of the classical composite model. This points to a limitation of the

t =40

100

Gaussian white noise
wv
o

100

%
t=40

Localized 'blob’

Fig. 5 Time evolution of the spatial patterns of the long-range internal stress t (r, t) — tex: and plastic strains
y — (y); top: patterns growing from uncorrelated Gaussian noise (initial condition (i)), bottom: patterns
growing from a single localized perturbation (initial condition (ii)); parameters as in Fig. 3
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composite model which assumes an entirely classical composite mechanics framework:
If applied to patterns that are heterogeneous on the micrometer scale, where in other
composite systems size effects start to become relevant, composite models which neglect
non-local stress contributions might systematically under-estimate the flow stress of het-
erogeneous dislocation arrangements, see also the discussion of strain gradient effects in
the composite model by Mughrabi (2001)

Relation to experimental observations

At first glance a plane-strain slip geometry with two perpendicularly intersecting slip sys-
tems as studied in the present idealized model seems unrealistic. However, a quite faithful
realization of this situation can be found in early deformation stages of ionic solids with
KCl crystal lattice structure. This structure consists of two interlaced fcc sub-lattices con-
taining the Kt and Cl~ ions, respectively. If the crystal is subjected to a uni-axial stress
state with the stress axis oriented along the [100] crystal lattice axis, deformation can take
place on four symmetrically oriented slip systems which form two conjugate pairs, namely
the (110)[ 110] and (110)[ 110] systems, and the (101)[ 101] and (101)[ 101] systems. We
make the following observations:

1 The active slip systems are such that, for tension along a [100] lattice axis aligned
with the x axis, the conjugate pairs of active slip systems produce plane strain
states in the xy and xz planes, respectively.

2 The slip systems in a conjugate pair intersect at right angles. Their mutual
interactions are comparatively weak (forming a junction produces, in line tension
approximation, no net energy gain). By contrast, there are strong interactions
between pairs of slip systems belonging to different conjugate pairs, leading to
significant latent hardening.

3 Asa consequence, during the early stage of deformation a symmetry breaking takes
place where deformation is taken over by one conjugate pair of slip systems while
the second pair becomes inactive (Schwerdtfeger et al. 2010). This situation quite
faithfully matches the slip geometry assumed in our simulations.

Dislocation structures observed in these materials develop heterogeneity already at com-
paratively small strains, forming cellular patterns as illustrated in Fig. 7, right. The
wavelength of these structures exceeds the mean dislocation spacing by a factor of about
14. By comparing the patterns with the theoretical results, several important conclusions
can be drawn regarding the interpretation of the dislocation density patterns that follow
from our model. To this end we remind the reader that all distances are measured in
mean dislocation spacings - mds. With a cell size of about 15 mds, we expect on average
about 50 dislocation lines threading each cell wall. The walls are essentially dipolar (they
carry little net mis-orientation), hence, we expect about 25 positive and an equal num-
ber of negative dislocations in a wall. These distribute over a length of 15 mds and a wall
thickness of about 5 mds, hence, the density is in the wall increased by a factor about 3,
as consistent with the simulations. Owing to the imbalance of fluxes during wall forma-
tion, dipoles form preferentially in such a manner that positive and negative dislocations
gather on the opposite sides of the wall. The width of dipoles can be estimated by noting
that the dislocations forming a dipole stem from independent sources, hence, it will be
of the order of (1/5) mds which, with a typical dislocation density of p = 3 x 10! m~2,
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Fig. 6 Strain evolution of the correlation between internal stress and local flow stress, normalized by the
scatter of local flow stresses; parameters as in Fig. 1

translates into a spacing of the dislocations in the dipoles of the order of about 0.35 um,
well above the atomic spacing. Hence, annihilation of dislocations is not expected to be a
relevant process here.

The walls are formed by the mutual trapping of dislocations into dipole-like configura-
tions (friction stress). They are stabilized by two effects that mutually compensate each
other: On the one hand, excess of dislocations of positive sign pushes against the wall
from one side (‘pile up stress’) , on the other hand, the dislocations within a dipole push
each other back (‘diffusion stress’). As a consequence we see a wall consisting of polar-
ized dipoles, with positive and negative dislocations accumulating on opposite sides of
the wall. The width of the walls, the corresponding width of the cells and the disloca-
tion spacings are all in good agreement with the experimental observations. This can be
seen in Fig. 7, right, where a piece of the simulated dislocation density pattern could,
after re-scaling to the dislocation spacing in the experiment, be seamlessly pasted into the
experimental image.

We also investigate whether our patterns match the similitude principle in the strong
form proposed by Oudriss and Feaugas (2016). To this end we study one-dimensional
density profiles taken along the slip directions and define, for a given profile, the wall
dislocation density p;" of wall i as the dislocation density at the corresponding density
maximum and the channel dislocation density p; as the dislocation density in the cor-
responding density minimum. Left and right wall boundaries x} and ! are defined as
the locations where the dislocation density takes the respective values (,olw - ,of) /2 and

(,olw — pl.CH) /2. The width of wall i is then evaluated as 1} = x} — xi. and the width of
1

channel i as A{ = x; — x]_;. Figure 8 shows lengths A" as well as pattern wave-lengths
Aagainst the corresponding densities p“" for different values of the average density po. As
can be seen, the data are well represented by a common fit function A" = C,/p“" with
C =~ 6, in good agreement with the findings of Ouderiss et al. (2016). Also the overall rela-
tionship between pattern wavelength A = A°+A" and total dislocation density pp matches
well experimental data (Oudriss and Feaugas 2016) (full data points in Fig. 7). We thus
conclude that our model is consistent with the strong similitude principle as observed by

Oudriss and Feaugas (2016).
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Fig. 7 Cell structures in LiF; top: birefringerence image of the (001) surface of a (100) oriented single crystal
showing slip activity on the orthogonal (170)[110] and (110)[ 110] slip systems, courtesy of J. Schwerdtfeger;
bottom: etch pit pattern on a (100) cross section after deformation under a creep load of ¢ = 5.9 MPa

(r = 245 MPa) to a creep strain of €” = 0.05 (y = 0.1), deformation temperature 773K, averaged dislocation
density p = 3 x 10'" m~2 (Streb and Reppich 1973); the insert has been taken from the simulation shown in
Fig. 3 and scaled according to the average dislocation density in the experimental image

Discussion and conclusions

We have presented a very simple model of dislocation cell structure formation in a 2D
setting with two perpendicularly intersecting slip systems. We assume straight parallel
edge dislocations whose Burgers vector directions are identified with the x and y direc-
tions of our coordinate system while their common line direction is parallel to the z axis.
This setting implies plane strain deformation in the xy plane which defines the system
plane of our 2D model. The dynamics is described in terms of the evolution of the sign
dependent densities of intersection points between the dislocations and the system plane.
Despite its simplicity, the model can be considered a elementary representation of dis-
location processes in a real system, namely a crystal with KCl lattice structure deformed
uni-axially along a cube axis. We find formation of cellular dislocation patterns with a
cell size of the order of about 10 mean dislocation spacings. The patterns obey the simil-
itude principle: their wavelength is proportional to the dislocation spacing and inversely
proportional to the stress at which they form. The simplicity of the 2D model, which
can not account for dislocation multiplication, does not allow us to consider strain hard-
ening. However, if we impose a higher overall dislocation density pg, then deformation
requires an accordingly higher stress that scales in proportion with /oo, and similitude
is maintained. In all these respects, is instructive to discuss the relations of the present
2D model with the earlier 2D model of dislocation patterning proposed by Sandfeld and
Zaiser (2015). In that model, the authors consider the evolution of dislocations on a single
slip system, where the system plane is parallel to the slip plane. The dislocation dynamics
is described in terms of density functions which characterize the arrangement and curva-
ture of curved dislocations forming loops in the system plane, using the CDD formalism
introduced by Hochrainer et al. (2014); Hochrainer (2015). Since dislocations are envis-
aged as curved loops, their expansion leads to an increase in dislocation density. Despite
all the differences with the present model, the model exhibits a very similar flux instabil-
ity. This instability again leads to patterns that are consistent with the law of similitude,
albeit with an inverted morphology (dislocation-rich ‘blobs’ surrounded by dislocation
depleted channels) that does not agree with any experimental observation. This discrep-
ancy may serve as a hint that multiple slip system activation is essential for the formation
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of patterns with cellular morphology, whereas effects of dislocation line curvature (which
are captured in the Sandfeld model but not in the present work) may be incidental.

Our findings are at variance with several commonly held viewpoints on dislocation pat-
terns: (i) It is an often expressed viewpoint (see e.g. Madec et al. (2002); Xia and El-Azab
(2015)) that cross slip is essential for dislocation cell structure formation. However, it is
easy to see that in KCL structures, as in our simulations, this mechanism is irrelevant
since there is only one (110) slip plane for each [110] slip vector, hence, there are no cross-
slip planes. Nevertheless, formation of cellular dislocation patterns is observed regularly
in these structures and our simulations - where cross slip is excluded by construction
of the model - provide an excellent match to the observed cellular patterns. We there-
fore conclude that cross slip is, in the end, incidental to dislocation patterning. (ii) The
composite model predicts that a patterned dislocation arrangement deforms at a stress
that is strictly below the stress needed for deforming a homogeneous reference arrange-
ment. This assumption is predicated upon a classical treatment of internal stresses that
does not allow for strain gradient dependent effects. Even within the classical continuum
mechanics framework, it is clear that dislocation patterns or strain patterns of general
morphology in general produce internal stress patterns that do not directly match the
strain/dislocation patterns as required by the composite model, compare our Figs. 4 and 5. In
fact, for the present slip geometry a match between stress and dislocation patterns would
be possible only if the dislocation patterns would form with a [11] orientation which
they do not. Deformation compatibility must therefore be ensured by other means that
cannot be described by standard continuum mechanics. Such effects are also needed to
understand pattern wavelength selection. In our model these effects are provided by the
gradient dependent stress contributions z? and 79, in other models a similar role is played
by curvature related terms (Sandfeld and Zaiser 2015). (iii) The only essential require-
ment for patterning in our model is that, for a given stress, the local dislocation flux is
a decreasing function of local dislocation density. Many models of work hardening ful-
fill this requirement for a wide range of deformation parameters. We therefore conclude
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Fig. 8 Length scales vs dislocation densities in simulated cell structures; open circles: cell interiors, open
diamonds: cell walls, the error bars indicate the standard deviation of data obtained from 10 interiors/walls
determined from intercept method as explained in text; open squares: overall pattern wavelength vs average
dislocation density; full squares: experimental pattern wavelength vs average dislocation density data
(Oudriss and Feaugas 2016)




Wu and Zaiser Materials Theory (2021) 5:3 Page 20 of 22

that, if dislocation density evolution is described by appropriate transport equations, pat-
terning is an expected feature of dislocation dynamics. Our investigation can be easily
generalized to a wide range of stress-velocity laws in order to provide guiding principles
that allow to decide under which deformation conditions heterogeneous patterns may
form. It thus provides an important complement to microstructure-based plasticity mod-
els as proposed e.g. by Castelluccio and McDowell (2017) who investigate the impact of
self-organization of dislocations into mesoscale structures on the macroscale deformation
behavior under complex loading paths.

Regarding the conditions for patterning, we may note that, in standard tensile testing,
the axial strain rate rather than the external stress is imposed. It is therefore instructive
to re-phrase our patterning criterion in terms of an imposed strain rate in the homoge-
neously flowing reference state. For the deformation geometry at hand, the axial strain
rate in that state (Schmid factor 1/2, 2 active slip systems) is simply ég = y. The instability
condition, Eq. (35), can then be written as

e PP T —aGb [ pi| < peGh (41)
2B - 8B

1

We re-write this in terms of a non-dimensional parameter combining dislocation density,

strain rate, and material constants:

G\ po 2\%3
pP= (43) m > Pc = <O[) (4'2)

This critical parameter P, separates a regime where the flow stress decreases with increas-
ing dislocation density (no patterning) from a regime where the flow stress increases
with dislocation density (patterning). Remarkably, a recent study by Fan et al. (2021)
demonstrates that the same parameter also controls the shape of the dislocation velocity
distribution and the magnitude of dislocation velocity fluctuations, separating a regime
of large fluctuations (large P) from a regime of small fluctuations (small P). In conjunc-
tion with the present findings we see that dislocation controlled plasticity exhibits two
regimes: a quasi-laminar regime with small fluctuations and homogeneous flow at high
strain rates/low dislocation densities (small P) and a quasi-turbulent regime with large
fluctuations, unstable dislocation flow, and dislocation patterning at low strain rates/high
dislocation densities (large P).
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