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Abstract
During plastic deformation of crystalline solids, intricate networks of dislocation lines
form and evolve. To capture dislocation density evolution, prominent theories of crystal
plasticity assume that 1) multiplication is driven by slip in active slip systems and 2)
pair-wise slip system interactions dominate network evolution. In this work, we analyze
a massive database of over 100 discrete dislocation dynamics simulations (with
cross-slip suppressed), and our findings bring both of these assumptions into question.
We demonstrate that dislocation multiplication is commonly observed on slip systems
with no applied stress and no plastic strain rate, a phenomenon we refer to as slip-free
multiplication. We show that while the formation of glissile junctions provides one
mechanism for slip-free multiplication, additional mechanisms which account for the
influence of coplanar interactions are needed to fully explain the observations. Unlike
glissile junction formation which results from a binary reaction between a pair of slip
systems, these new multiplication mechanisms require higher order reactions that lead
to complex network configurations. While these complex configurations have not
been given much attention previously, they account for about 50% of the line
intersections in our database.

Introduction
A fundamental goal in dislocation theory and physical metallurgy is to understand how
and why dislocations multiply. Such multiplication affects numerous mechanical proper-
ties of crystalline solids, such as the strain hardening rate, fracture toughness, fatigue-life,
and creep-life, to name a few. However, theories which predict the multiplication rate
on the basis of fundamental dislocation processes have been elusive; existing models for
dislocation multiplication are either phenomenological (i.e., not connected to the under-
lying physical mechanisms) (Mecking and Kocks 1981; Roters et al. 2010) or derived on
the basis of assumed multiplication mechanisms, such as storage via junction formation
(Devincre et al. 2008; Kubin et al. 2008a). In the pursuit of a physics-based model for
the multiplication rate which minimizes constitutive assumptions, the authors recently
compiled a database of discrete dislocation dynamics (DDD) simulations for more than
100 loading orientations in which dislocation cross-slip was suppressed (Akhondzadeh
et al. 2020). While analyzing that database, it was discovered that dislocation multipli-
cation frequently occurs on slip systems which experience zero applied shear stress (i.e.,
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zero Schmid factor) and have a plastic strain rate of zero; we termed such multiplication
slip-free multiplication. We subsequently sought to clarify the mechanisms underlying
slip-free multiplication and assess its significance in greater detail. In so doing, we discov-
ered that the dislocation networks in our simulations did not evolve in the simple manner
assumed by predominant theories; these networks are tremendously complex and cannot
be readily tied to common dislocation theory concepts, such as the formation of binary
junctions. We further discovered that slip-free multiplication appears to be, in part, the
result of these complex interactions. The goal of this work is to elucidate these discoveries
and discuss their importance and implications.
The prevailing view regardingdislocationnetwork evolution in face-centered cubic (FCC)

metals is that the interactions within the network can be analyzed in terms of pair-
wise interactions between slip systems (Argon 2008; Devincre et al. 2008; Franciosi et al.
1980; Hirth 1961). Each mobile dislocation belongs to one of the twelve slip systems
of the 1

2 〈110〉{111} type. Due to the symmetry of these slip systems, there are only six
distinct types of interactions possible between every pair of slip systems; namely, self,
coplanar, Hirth, Lomer, glissile and collinear (Kubin 2013). Of these, the interactions
between non-coplanar (forest) slip systems (Hirth, Lomer, glissile, collinear) lead to the
formation of binary junctions (e.g., see Fig. 6a). The stability or strength of the six slip
system interactions affects the evolution of the network, thereby influencing the flow
stress on each slip system (τi), the hardening rate (�), as well as dislocation multiplica-
tion rate (ρ̇i), where the subscript i denotes the slip system (Akhondzadeh et al. 2020).
Madec et al. (2003) and Kubin et al. (2003) used specialized simulations to compute the
interaction coefficients (proportionality constant between the flow stress and the forest
dislocation density) between non-coplanar slip systems and concluded that the collinear
junction is the strongest type of interaction (Devincre et al. 2005), and hence is expected
to play a dominant role in the yield strength. We computed interaction coefficients by
analyzing our large-scale DDD simulation database and found that the glissile junction
has the largest interaction coefficient (Akhondzadeh et al. 2020). We further observed
that for a loading orientation to exhibit a high hardening rate (� > 100 MPa), the dom-
inant slip system (slip system with the highest Schmid factor) needed to have either a
collinear or glissile interaction with another active slip system.
While slip system interaction coefficients provide a measure of the strength contribu-

tion from a given interaction, they do not directly inform our understanding of dislocation
multiplication mechanisms. Additional analyses or assumptions are necessary to under-
stand multiplication. For example, Kubin et al. (2008a) developed a theory for dislocation
multiplication based on the assumption that dislocations are “stored” when stable binary
junctions form, invoking the notion of a dislocation mean free path (Devincre et al. 2008).
In a similar vein, Stricker and Weygand (2015) examined the role of glissile junctions
during the evolution of dislocation structures. Glissile junctions are unique among the
four junction types because the junction dislocation belongs to a 1

2 〈110〉{111} slip sys-
tem, so is able to bow out and contribute to plastic flow. Glissile junction formation can
also be thought of as a multiplication mechanism, since the junction dislocation increases
the dislocation density of the 1

2 〈110〉{111} slip system to which the junction belongs;
we refer to this multiplication mechanism as the direct glissile mechanism. Stricker and
Weygand (2015) found that dislocation segments originating from glissile junction reac-
tions contributed to 20-50% of the total plastic strain and dislocation density. Building
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on this work, Sudmanns et al. (2019) proposed a multiplication model which accounts
for the direct glissile multiplication mechanism. While most of the previous studies were
focused on non-coplanar (forest) slip system interactions, the interactions between dislo-
cations on coplanar slip systems have received less attention, especially in terms of their
contribution to multiplication. However, in our analysis below we find that coplanar reac-
tions are associated with a key mechanism of slip-free multiplication. Hence, we expect
that coplanar reactions also provide a major contribution to the overall multiplication
rate.
Slip-free multiplication has been observed by several other research groups. The dis-

location density increase in inactive slip systems has been observed in experiments
(Higashida et al. 1986) and ultra-scale molecular dynamics simulations (Zepeda-Ruiz et al.
2020). In the DDD simulations of Weygand (2014) and Stricker and Weygand (2015),
slip-free multiplication was attributed to the direct glissile mechanism. While the direct
glissile mechanism plays an important role, we show below that it cannot explain all of
the behaviors we observe in our simulation database. For example, in loading orienta-
tions such as [ 0 1 1] and [ 4 9 10] where slip-free multiplication is observed, an insufficient
number of slip systems are active to produce glissile junctions on the slip-free system via a
binary reaction. Instead, we show below that a combination of glissile and coplanar inter-
actions are, at least in part, responsible for dislocation multiplication on certain slip-free
slip systems.
In trying to better understand the dislocation processes which give rise to slip-free mul-

tiplication, we discovered that the networks from our simulations are highly complex. By
complex, we mean that the topology of the network cannot be readily explained on the
basis of binary collisions between pairs of slip systems. Instead, the nodes and links (dislo-
cation lines which connect nodes) of the network are largely unrecognizable when viewed
through the lens of binary reactions. Furthermore, we find that slip-free multiplication
is intimately tied to this complexity. Below we demonstrate two slip-free multiplica-
tion mechanisms which involve “unconventional” network configurations. However, it is
likely that more multiplication mechanisms are at play; the complexity of the disloca-
tion networks makes it tremendously difficult to identify mechanisms. All together, these
observations bring into question the traditional view that the dislocation network can
be characterized in terms of slip system pair interactions, and motivate more in-depth
analyses of the network and its evolution.
The remainder of the paper is organized as follows. In “Simulations setup” section,

we present a summary of the simulation setup. In “Data analysis” section, we inves-
tigate how microstructural features of slip system i, are correlated with each other
and with their values on other slip systems. We observe that the dislocation den-
sity ρi values of two slip systems are correlated with each other as long as they are
coplanar, even when their Schmid factors Si are not correlated with each other. A
related finding is that there are many cases in which dislocation multiplication occurs
on slip systems with very small Schmid factors and negligible shear strain rate γ̇i. In
“Physical analysis of slip-free multiplication” section we examine the physical mecha-
nisms of slip-free multiplication, showing that glissile and coplanar interactions both play
an important role. In addition, we show that the actual sequence of events leading to dislo-
cationmultiplication can bemore complex thanwhat is assumed in the conventional view.
In “Discussion” section, we discuss the physical consequences of slip-free multiplication,
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including a modification to the Kocks-Mecking model of dislocation multiplication. A
summary is given in “Conclusion” section.

Simulations setup
In this work, we make use of our large DDD simulation database presented in
Akhondzadeh et al. (2020) to investigate the mechanisms of dislocation multiplication.
In what follows, a brief summary of the simulation setup is given. The DDD simulations
were performed using the ParaDiS program (Arsenlis et al. 2007) with subcycling time
integration algorithm (Sills et al. 2016) implemented for GPU computation (Bertin et al.
2019). Material properties for FCC single crystalline copper were used, with shear modu-
lus μ = 54.6 GPa, Poisson’s ratio ν = 0.324, and Burgers vector magnitude b = 0.255 nm.
Glissile dislocations on the 1

2 〈110〉{111} slip systems follow a linear mobility law with drag
coefficient B = 1.56 × 10−5 Pa·s. Cross slip was suppressed in all of the simulations (see
Akhondzadeh et al. 2020).
The initial configuration was obtained by relaxing randomly introduced straight dis-

location lines whose character angles are one of 0◦ (screw dislocation), 60◦ or 90◦(edge
dislocation). Initial straight dislocations are placed randomly in a (15μm)3 cell subjected
to periodic boundary conditions in all three directions. No artificial pinning points are
introduced. After relaxation the initial dislocation density was ρ0 ≈ 1.2 × 1012m−2. The
relaxed configuration, as shown in Fig. 1a, was then subjected to uniaxial tension at a con-
stant strain rate of ε̇ = 103 s−1 along 120 different crystallographic directions, sampled
in the symmetry-irreducible stereographic triangle, as shown in the inset of Fig. 2a. The
simulations were performed until the shear strain on the dominant slip system reached
values in the range of γd ≈ 1% to 5%, depending on the loading orientation and multipli-
cation rate. An example of the predicted shear stress – shear strain curves corresponding
to three different loading orientations are shown in Fig. 2a. From the shear stress – shear
strain curves, the strain hardening rate � ≡ dτ/dγ was extracted by fitting a straight line
to the post-yield regime, as shown in Fig. 2a. The resulting strain hardening rates for 120
different loading orientations are shown in the inset of Fig. 2a.
In FCC crystals, plastic slip takes place on twelve 1

2 〈110〉{111} slip systems as detailed
in Table 1. In this work, we will use the Schmid and Boas (SB) notation to distinguish
these slip systems. The slip systems are comprised of four different slip planes, denoted
by A, B, C, and D, each containing three different Burgers vectors (slip directions). There
are, however, only six unique Burgers vectors, denoted by b1,b2, ...,b6. In SB notation,
each slip system is labeled with a letter-number pair (e.g., B4), corresponding to the
plane and Burgers vector indices. The SB label for each slip system is given in Table 1.
Within each slip plane, the three different slip systems are said to be coplanar with
each other. The dislocation microstructure is a network formed by (physical) nodes and
dislocation links1. Nodes are the locations where dislocations on different slip systems
meet, and a link refers to a dislocation line connecting two nodes (Sills et al. 2018) (see
Fig. 6). Each link is associated with a Burgers vector and a slip plane, hence, belongs
to one of the twelve slip systems or is a non-glissile dislocation (e.g., Lomer or Hirth

1Note that the dislocation network as defined in this work does not contain discretization nodes that are used in a DDD
simulation (Bulatov and Cai 2006) Hence, each link is connected to only two (end) nodes regardless of its length or
curvature.
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Fig. 1 a Relaxed configuration used as initial configuration in the simulations. b Configuration at γd = 5%
shear strain along [ 4 9 10]

junctions). By analyzing the links and nodes of the network, we can gain insight into how it
evolves.
Figure 2 shows some of the data that can be obtained from the DDD simulations for

the three loading orientations [001], [011] and [111], plotting the shear stress, total dis-
location density ρ, and total number of dislocation links per unit volume N, as functions
of the shear strain on the dominant slip system. The total densities ρ and N are the sums
of the contributions from individual slip systems, i, denoted by ρi and Ni, respectively,
plus contributions from sessile dislocations. The evolution of ρi, Ni, and other relevant
microstructural parameters at the slip system level, including the accumulated plastic
shear γi, were recorded during all the simulations. Due to the statistical nature of DDD
simulations, each of these variables fluctuates with time during the simulation, while a
coarse-grained expression to model their evolution is expected to give smooth values as
a function of time. Hence, some averaging is needed to reduce the fluctuations in the raw

Fig. 2 a Shear stress-strain curves predicted by DDD simulations, along three high-symmetry loading
orientations. Inset figure shows strain hardening rates from DDD simulations under constant strain rate
ε̇ = 103 s−1 along 120 different loading directions. b Total dislocation density as a function of shear strain for
the three loading orientations shown in (a). The windows of averaging, denoted by wr , r = 1, 2, . . . , 5 are
illustrated on curve II and averaged values are shown by red dots. c Total number of link per unit volume for
the three loading orientations shown in a
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Table 1 Slip systems in FCC crystals with their slip plane and Burgers vector b and their Schmid-Boas
(SB) notation. The column G i lists glissile reactions between slip-system pairs that produce a
dislocation on slip system i. Also listed are the Schmid factors Si for four loading orientations: [ 0 0 1],
[ 1 1 1], [ 0 1 1] and [ 4 9 10]

Index i Slip plane b SB index i Gi S[001]i S[111]i S[011]i S[4 9 10]i

1
(
1̄11

) 1
2

[
01̄1

]
A2 A3+D6, A6+C3 0.41 0.00 0.00 0.03

2
(
1̄11

) 1
2 [101] A3 A2+D6, A6+B2 0.41 0.27 0.41 0.43

3
(
1̄11

) 1
2 [110] A6 A2+C3, A3+B2 0.00 0.27 0.41 0.40

4 (111) 1
2

[
01̄1

]
B2 B4+C5, B5+D4 0.41 0.00 0.00 0.04

5 (111) 1
2

[
1̄01

]
B4 A2+B5, B2+C5 0.41 0.00 0.41 0.29

6 (111) 1
2

[
1̄10

]
B5 A2+B4, B2+D4 0.00 0.00 0.41 0.24

7
(
1̄1̄1

) 1
2 [011] C1 A3+C5, B5+C3 0.41 0.27 0.00 0.12

8
(
1̄1̄1

) 1
2 [101] C3 B5+C1, C5+D1 0.41 0.27 0.00 0.09

9
(
1̄1̄1

) 1
2

[
1̄10

]
C5 A3+C1, C3+D1 0.00 0.00 0.00 0.03

10
(
11̄1

) 1
2 [011] D1 A6+D4, B4+D6 0.41 0.27 0.00 0.20

11
(
11̄1

) 1
2

[
1̄01

]
D4 A6+D1, C1+D6 0.41 0.00 0.00 0.06

12
(
11̄1

) 1
2 [110] D6 B4+D1, C1+D4 0.00 0.27 0.00 0.13

DDD data. To this end, the raw data trajectory of each simulation is divided into 5 blocks
as shown in Fig. 2b, and the time-averaged values for Ni and ρi are computed for each
block.
To compute the plastic strain rate γ̇i for each slip system, we first fit the raw (γi, t) data

to a third order polynomial of time t. We then take an analytic derivative of the polyno-
mial and evaluate γ̇i at the center time of each block. Unfortunately, the above procedure
cannot be applied successfully to evaluate the Ṅi and ρ̇i, because of their large fluctua-
tions during the simulation. Therefore, in “Correlation between microstructural features
on different slip systems” section we use another measure to qualitatively compare dis-
location multiplication from different simulations; we evaluate Ni and ρi at γd = 0.5%,
denoted by N̂i and ρ̂i, respectively. Since all the simulations started from the same initial
configuration, N̂i and ρ̂i can be used as a proxy for the dislocation multiplication rate up
to γd = 0.5%.

Data analysis
Correlation betweenmicrostructural features on different slip systems

Having all the values of Si, γ̇i, ρi and Ni for every slip system i from DDD simulations, we
can now perform various analyses on the data, such as the identification of correlations
between various features across different slip systems. Such an analysis helps to identify
slip system interactions which are relevant to dislocation multiplication, especially slip-
free multiplication which is the focus here. To this end, for each microstructural feature
(e.g., ρi) on every slip system i, we form a column vector with the data from every sim-
ulation and every time (averaging) block and calculate the Pearson correlation between
the vectors from different slip systems. The resulting correlation coefficient, r, for each
pair of features is a scalar bounded between -1 and 1; the closer is the correlation coef-
ficient to r = 1, the stronger is the correlation (both increase together), and values close
to r = −1 indicate anti-correlation (one decreases as the other increases, and vice versa).
r = 0 indicates no correlation.
Figure 3a shows the Pearson correlation matrix between the plastic shear strain rates γ̇i

on slip systems i. The slip systems are indexed according to Table 1, so that the indices for
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Fig. 3 Pearson correlation matrix plot of a shear strain rate γ̇i , b Schmid factor Si , c dislocation density ρi , and
d number of links per unit volume Ni . Slip systems are labelled according to the Table 1. All 120 simulations
whose hardening rates are shown in the inset of Fig. 2a are used in the plots. Heavy black boxes denote sets
of coplanar slip systems

coplanar slip systems are consecutive. To emphasize this point, we use heavy black lines
to denote groups of coplanar slip systems. Because all of our DDD simulations were per-
formed with the tensile loading axes lying in a specific stereographic projection triangle
as shown in the inset of Fig. 2a, the slip systems are not sampled symmetrically, leading to
the observed asymmetries in the correlation matrices. As can be seen in Fig. 3, generally
speaking the values of γ̇i are not correlated with each other, with a few exceptions. For
example, it is observed that values of γ̇C1 and γ̇C3 are correlated with each other with the
Pearson correlation coefficient of r (γ̇C1, γ̇C3) = 0.94. This correlation, however, is not a
general feature of plasticity in FCC crystals, but rather specific to the stereographic tri-
angle in which we have performed our DDD simulations. In this triangle, SC5 < 0.08 and
SC1 = SC3 + SC52 for all loading orientations. Hence, the values of SC1 and SC3 are always
very close to each other, causing the slip systems C1 and C3 to have similar plastic strain
rates. Correlation (i.e., r > 0.7) is also observed between the following slip-system pairs:

2Schmid factor is defined as S = cos(φ) cos(λ) where φ and λ are the angles tmakes with Burgers vector and normal
plane vector, respectively, and t denotes the unit vector of loading orientation. According to Table 1, we have
bC1 = bC3 + bC5. Hence, t · bC1 = t · bC3 + t · bC5. Noting that slip systems C1, C3 and C5 share the same normal plane
vector, this leads to SC1 = SC3 + SC5.
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(γ̇A2, γ̇B2), (γ̇A2, γ̇D4) and ( ˙γB2, γ̇D4). In all of these cases, corresponding pairs of Si values
are also correlated with each other as shown in Fig. 3b. Comparing Fig. 3a and b, we con-
clude that the values of γ̇i on different slip systems are generally independent from each
other, except between slip systems whose Schmid factors are correlated.
Contrary to the correlations among the shear strain rates γ̇i, ρi and Ni clearly exhibit

regions of high correlation where the Schmid factors are uncorrelated, as shown in Fig. 3c
and d. Most notably ρi and Ni among coplanar systems are strongly correlated. This cor-
relation indicates that dislocation multiplication may occur in a slip system with a low
Schmid factor (i.e., slip-free multiplication) as long as one or more of its coplanar slip
systems are active. These coplanar correlations are strongest on planes B, C, and D, and
weakest on plane A. For the stereographic triangle used here, plane A is always the most
favorably orientated plane with respect to the loading direction.We observed that in load-
ing orientations where slip-free multiplication does not occur (see Fig. 5), always exactly
one of the slip systems on plane A multiplies (e.g., the [ 1 2 3] loading orientation with A3
being the only slip system that is active and multiplies). This results in lower correlation
on this plane. Finally, we note that the correlations observed for ρi andNi are quite similar,
indicating that the dislocation density and the link density evolve in a similar manner.
The fact that ρi and Ni values of coplanar systems are correlated, but shear strain rates

γ̇i are not, means that dislocation multiplication rates ρ̇i and Ṅi cannot be simply pro-
portional to γ̇i. For example, the commonlyusedKocks-Meckingmodel (Mecking and Kocks
1981; Devincre et al. 2008) (see “Discussion” section) assumes that ρ̇i ∝ γ̇i. Our data
indicate that additional terms are necessary in the model to capture slip-free multipli-
cation. Recently, Stricker and Weygand (2015) showed that ρ̇i depends not only on the
shear rate of the slip system i, but also on the shear rate of other slip systems that can
produce dislocations on slip system i through a glissile reaction (direct glissile multipli-
cation). Alternatively, in our previous study (Akhondzadeh et al. 2020) we show that the
evolution of ρ̇i in DDD can be described by an expression that depends not only on γ̇i but
also on γ̇i′ and γ̇i′′ , where i′ and i′′ denote the two other slip systems coplanar with slip
system i.
In order to obtain a better understanding of the interplay between coplanar slip sys-

tems and dislocation multiplication, we define Simax ≡ max (Si, Si′ , Si′′) as the maximum
Schmid factor of the three coplanar slip systems, and examine the correlation between ρi
and both Si and Simax . Examining correlations in this way will enable us to see the inter-
action between slip-driven multiplication (driven by slip due to large Si) and slip-free
multiplication (driven by Simax when Si ≈ 0). Figure 4 shows the values of γ̇i, ρi and Ni at
γ̇d = 0.5% for all loading orientations, as functions of Si and Simax . Note that all the data
points in these plots are from DDD simulations that share the same initial configuration
with (approximately) the same dislocation density on each slip system. Accordingly, we
can use the dislocation density of each slip system ρ̂i = ρi(γd = 0.5%) as a measure for
the amount of multiplication which has occurred on that slip system (i.e., ρ̂i is a proxy
for ρ̇i in this plot). Figure 4b and c clearly indicate two different regions where multipli-
cation increases with either Si or Simax , designated by blue and red colors, respectively. In
the blue region both dislocation multiplication and slip rate γ̇i increase with the Schmid
factor Si. However, in the red region dislocation multiplication can be significant while
the slip rate γ̇i is negligibly small. Hence, we refer to this type of multiplication as slip-
free multiplication. Furthermore, in the red region dislocation multiplication increases
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Fig. 4 DDD simulation values of a γ̇i , b ρi , c Ni at γ̇d = 0.5% as a function of Si and Simax . For clarity, data
points are also projected onto the bottom plane. Inset figures show the same data plotted as a function of
Si − 0.5 Simax , which is equivalent to viewing the data along the boundary line between red and blue data
points

with increasing Simax , even when Si ≈ 0. The boundary between the two regions can be
delineated by the line Si−0.5 Simax = 0, which according to the inset in Fig. 4b corresponds
to the minimum values of dislocation multiplication. It can be shown that the red points
in Fig. 4, for which Si < 0.5 Simax , always correspond to the slip system with the lowest
Schmid factor among the three coplanar slip systems (see “Dependence of multiplication
rate on Schmid factors” section for more discussions). The inset of Fig. 4b shows that the
dislocationmultiplication rate is appreciable only if |Si−0.5 Simax | > 0.1, which is denoted
by a set of vertical lines in the insets; this may be considered as a rule-of-thumb for a
necessary condition for dislocation multiplication. Note that this condition captures both
slip-driven multiplication (blue data) and slip-free multiplication (red data), but is purely
an empirical correlation revealed by our DDD database. We will discuss the meaning of
this rule-of-thumb in “Discussion” section.
The data presented above clearly demonstrate that slip-free multiplication is a fre-

quent phenomenon within our DDD database. The correlation analysis further indicates
that coplanar slip system interactions are likely to play an important role in slip-free
multiplication. Next, we quantify the fraction of the total dislocation density constituted
by slip-free multiplication.

Occurrence and quantification of slip-free multiplication

In this section we analyze the loading orientations that exhibit slip-free multiplication,
and show that this type of multiplication can constitute up to 25% of the total disloca-
tion density. For this purpose, in the following we give a more precise criterion for the
occurrence of slip-free multiplication. A slip system i is considered to undergo slip-free
multiplication if the following conditions are satisfied.


ρi/
ρd > 0.3, γ̇i/γ̇d < 0.1, Si < 0.2 (1)

where 
ρi is the change of dislocation density on slip system i from the beginning
to the end of the DDD simulation, and the subscript d indicates the dominant slip
system.3 There are 90 slip systems from 61 (out of 120 total) different loading orientations
satisfying the three conditions in Eq. (1).

3The criterion Si < 0.2 is introduced because a few slip systems are found to satisfy the first two conditions in Eq. (1),
even though their Schmid factors are above 0.3; they do not correspond to the slip-free multiplication phenomenon
considered here. For all the slip systems that do satisfy the three conditions in Eq. (1), they are also found to satisfy the
conditions of γ̇i/γ̇d < 0.05 and Si < 0.1.
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As stated in the previous section, in our simulations slip plane A always contains the
slip system with highest resolved shear stress. We observed in our data (with only two
exceptions) that if plane A does not show slip-free multiplication in a simulation, then the
other planes do not exhibit slip-free multiplication either. Hence, in determining the load-
ing orientations with slip-free multiplication, we only need to consider plane A. Figure 5a
shows the minimum values of (Si − 0.5 Simax) for i =A2, A3 and A6. According to the
rule-of-thumb given above, this figure can be used to predict the loading orientations
with slip-free multiplication.We show as dashed lines in Fig. 5a the boundaries separating
loading orientations expected to exhibit slip-free multiplication from those that should
not on the basis of this rule-of-thumb.
Next, in order to quantify the relative importance of slip-free multiplication, we denote

by ρ̂sf the sum of the dislocation density on those slip systems classified as undergoing
slip-free multiplication according to Eq. (1), and plot its ratio ρ̂sf/ρ̂ to the total dislocation
density ρ̂ at γd = 0.5% in Fig. 5b. This figure shows that the predictions of slip-free multi-
plication by the rule-of-thumb as shown in Fig. 5a are consistent with the DDD simulation
data and a more precise criterion of slip-free multiplication. It can be seen that in sim-
ulations where slip-free multiplication occur, it accounts for 5–25% of the total density.
For comparison, this ratio is approximately as high as the ratio of dislocation junctions
(Lomer, Hirth, etc.) to the total density. The ratio ρ̂sf/ρ̂ was observed to gradually increase
during the course of the simulation.
In the next sections, we discuss specific examples where slip-free multiplication is

observed, why the direct glissile mechanism is insufficient to fully explain these observa-
tions, and propose two new slip-free multiplication mechanisms.

Physical analysis of slip-freemultiplication
Analysis of different loading orientations

In order to understand the underlying mechanisms for slip-free multiplication, we first
analyze the [ 0 0 1] loading orientation which has ρ̂sf/ρ̂ = 0.24. In this case, there are 4
slip systems with zero Schmid factor and 8 slip systems with the maximum Schmid fac-
tor as shown in Table 1. Dislocations on the 8 active slip systems can collide and react
with one another, e.g., to form glissile junctions. A schematic representation of the glissile

Fig. 5 aMinimum value of (Si − 0.5Simax ) for i =A2, A3 and A6 as a function of the loading orientation in the
stereographic triangle. Regions with Si − 0.5Simax < −0.1 on plane A indicate (as a rule-of-thumb) regions
where slip-free multiplication is expected. b Dislocation density ρ̂sf on slip systems showing slip-free
multiplication (according to the criterion in Eq. (1)) as a fraction of the total dislocation density ρ̂ at γd = 0.5%
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interaction mechanism is shown in Fig. 6a. For each slip system i, there are two combi-
nations of slip system pairs whose reaction produces a glissile junction which is a mobile
dislocation on slip system i. These combinations are denoted by Gi and they are listed in
Table 1 for every slip system i. In each combination, one of the two reacting slip systems
is coplanar with slip system i. For example, segments on the slip system A6 can be formed
by reactions of the type A2+C3 as well as A3+B2. For the [0 0 1] loading orientation, dislo-
cations on each of the slip-free slip systems can be produced via glissile reactions between
active slip systems.
The situation is similar for the [ 1 1 1] loading orientation which has ρ̂sf/ρ̂ = 0.24; slip

systems A2, C5, and D4 have zero Schmid factor but still show dislocation multiplication.
This is consistent with the rule-of-thumb in “Data analysis” section, because each of these
three slip systems satisfies the condition that |Si − 0.5 Simax | = 0.13 > 0.1. Each of these
slip systems can be produced via glissile reactions since all of the participating slip sys-
tems in Gi are active (with the maximum Schmid factor). Note that while slip systems B2,
B4, and B5 also have zero Schmid factor, their dislocation densities do not increase with
strain. Considering B2 as an example, Gi consists of B4+C5=B2 and B5+D4=B2. However,
the four slip systems, B4, C5, B5, and D4, are inactive. Hence, we do not expect glissile
junctions to form frequently on slip system B2. This is also consistent with the rule-of-
thumb in “Data analysis” section, because the Schmid factors on all three slip systems on
plane B are zero, so that |Si − 0.5 Simax | = 0 < 0.1. Hence, for [ 1 1 1] loading, the trends in
the slip-free multiplication can be explained on the basis of the direct glissile mechanism.
On the other hand, the slip-free multiplication observed in [ 0 1 1] loading orientation

cannot be explained by the direct glissile mechanism. Among the 8 slip systems with zero
Schmid factors only A2 and B2 show dislocation multiplication with ρ̂sf/ρ̂ = 0.15. Tak-
ing A2 as an example, the possible glissile interactions which can result in a dislocation

Fig. 6 a Direct glissile junction formation on slip system k from dislocations on slip systems i and j. Slip
system i shares its slip plane with slip system k but not with slip system j, e.g., A2 + C3 = A6. Both end nodes
for the new glissile link (k) are G-type. b Coplanar junction formation on slip system k from dislocations on
slip systems i and j. All three slip systems, i, j, k are on the same slip plane, e.g., A2 + A3 = A6. Both end nodes
for the new coplanar link (k) are P-type
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on A2 are A3+D6=A2 and A6+C3=A2. However, slip systems D6 and C3 do not multi-
ply (their dislocation densities stay close to their initial values). In fact, the dislocation
density on A2 greatly exceeds that on D6 or C3, even though all these slip systems have
zero Schmid factors. Therefore, dislocation multiplication on A2 cannot be the (passive)
reaction product between, say, A3 and D6, because the continuous production of glissile
junctions requires additional dislocations in slip systems D6 or C3 (which do not exhibit
multiplication). Even if a limited amount of dislocation content on A2 can be formed by
the direct glissile reaction between A3 and D6, new A2 links cannot bow out to undergo
slip-driven multiplication as the Schmid factor on A2 is zero, making the driving force
for bowing zero. This suggests that there must be a mechanism other than direct glis-
sile junction formation that causes dislocation multiplication on slip system A2. In order
to uncover this mechanism, we continue the analysis for the [ 4 9 10] loading orientation,
which is a simpler case than [ 0 1 1] because only one slip system exhibits slip-free multi-
plication with ρ̂sf/ρ̂ = 0.10; the complexity of network evolution during [ 0 1 1] loading
made it difficult to identify mechanisms.
The plastic strain rate and dislocation density evolution on all slip systems for the

[ 4 9 10] loading orientation are shown in Fig. 7a and b. It can be seen that slip systems
A3 and A6 exhibit both high shear strain rate and high multiplication rate, because of
their high Schmid factors (0.43 and 0.40, respectively). However, slip system A2 exhibits
the behavior of slip-free multiplication; its dislocation multiplication rate (while lower
than that of A3 and A6) far exceeds all the remaining slip systems, in spite of its very low
Schmid factor (0.03). Similar to the [ 0 1 1] case, the copious dislocation multiplication on
slip system A2 could not have been the result of direct glissile multiplication via glissile
junction reactions A3+D6 or A6+C3, because there are far fewer dislocations on D6 or
C3 than on A2.

Topology and complexity of the dislocation networks

To reveal the multiplication mechanisms on A2 for the [ 4 9 10] loading orientation, we
examine the properties of all dislocation links on this slip system. Figure 7c shows the
number and length distribution for dislocation links on A2 as a function of their average

Fig. 7 a Plastic shear strain on different slip systems as a function of resolved shear strain on the dominant
slip system γd for the [ 4 9 10] loading orientation. b The corresponding dislocation density on different slip
systems. Note the dislocation multiplication on slip system A2 which experiences negligible plastic strain. c
Number distribution and length distribution of dislocation links at γd = 5% on slip system A2 as a function of
mean character angle. The lengths are in units of b = 0.255 nm. To reduce fluctuations, data have been
averaged over a window of width 
γd = 0.05%
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character angle (i.e., the angle between their end-to-end vector and their Burgers vector,
see inset) for a network taken at γd = 5% which is shown in Fig. 1b. A peak is observed at
the 60° orientation, which is the character angle of newly formed glissile junctions. This is
because the end nodes of glissile junctions are confined to remain on the intersection line
between the two parent slip planes, thus enforcing the end-to-end vector of the junction
to stay at 60◦. Hence a peak at the 60◦ orientation is indicative of glissile junction forma-
tion events. However, we shall see that the situation is more complex. In fact, most of the
A2 links at the 60◦ orientation are not in the configuration of a direct glissile reaction.
To gain further insight into the nature of the links within the network, we analyze the

nodes which connect the links. Table 2 shows the number of A2 links categorized based
on the types of their two end nodes. Nodes are categorized into seven distinct types:
G refers to a glissile node connecting the A2 dislocation with dislocations on A3 and
D6, or with dislocations on A6 and C3. A link resulting from a glissile junction, such as
one formed via the direct glissile mechanism, must have two glissile nodes of type G as
shown in Fig. 6a. P refers to a coplanar node connecting the A2 dislocation with disloca-
tions on A3 and A6. L refers to a collinear node connecting the A2 dislocation with an
out-of-plane dislocation having the same Burgers vector. If the out-of-plane dislocation
is on slip system B2, the node is categorized as binary collinear (L1). The collinear node
is categorized as L2 if the out-of-plane dislocation is a junction dislocation (e.g., of the
Lomer type). Hirth (H) and Lomer (M) nodes are three armed nodes, where exactly two
arms are glissile and their interaction produces Hirth and Lomer junctions, respectively.
For example, interactions of A2 with C1 and C5 produces Hirth and Lomer interac-
tions, respectively. All other nodes are categorized as type O for “other,” indicating that
they are not the result of a binary reaction. Examples of O-type are nodes connected to
three glissile, non-coplanar arms (e.g., A2, C5, D4) or nodes connected to four or more
arms. We will introduce one possible mechanism for the formation of O-type nodes in
“Assisted glissile mechanism” section. In Table 2 we show the node configurations for all
links, and also separate out links with a character angle of 60 ± 2.5◦ from other character
angles. For brevity, we grouped Hirth and Lomer-type nodes together, as well as L1 and
L2-types.
A number of observations can be made from Table 2. First, a freshly created glissile dis-

location on A2 must have both nodes of the G type and be oriented at 60◦. There are only

Table 2 Number of dislocation links on slip system A2 with different end node types at γd = 5% for
the [ 4 9 10] loading orientation. Columns and rows denote the two end nodes of each link. There are
1488 dislocation links on slip system A2. G, P, L=L1+L2, H, and M refer to glissile, coplanar, collinear,
Hirth, and Lomer nodes, respectively, as shown in Figs. 6 and 9a. All other nodes are categorized as
type O. 259 A2 links that are connected to a glissile node of the type A2+B5=B4 and A2+B4=B5 have
been excluded, because they are considered as A2 links participating in a glissile reaction, instead of
being the product of a dislocation reaction

All links 60(±2.5)◦ links non-60◦ links
G P L1/L2 H/M O G P L1/L2 H/M O G P L1/L2 H/M O

G 11 31 75 14 80 6 0 7 2 10 5 31 68 12 70

P 32 101 32 192 0 5 3 11 32 96 29 181

L1/L2 128 51 262 14 4 34 114 47 228

H/M sym 8 65 sym 3 11 sym 5 54

O 147 22 125
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6 such dislocation links, i.e., a very small fraction out of 1488 total links on A2. Second,
the number of A2 links with both ends being coplanar nodes (P) is 32, which is more than
four times the number of newly created glissile dislocations. Third, a large number of A2
links (101) have one node of coplanar type (P) and the other node of collinear type (L); we
will show one formation mechanism for such links in the next section. Fourth, most of the
A2 links have one or both nodes of the type O, meaning that they are not the results of any
binary reactions between ordinary dislocations on the 12 slip systems; they are the results
of (secondary or tertiary) reactions between products of previous dislocation reactions.
To further investigate this point, we analyze the node types distribution on all slip sys-

tems at γd = 0.5% for all different loading orientations. Results for the contribution of
each category to the total number of nodes in the microstrucutures are shown in Fig. 8.
Note that unlike Table 2, this figure does not contain link information; this figure only
characterizes the nodes, not their connectivity. Here we find that, as a general feature
among all dislocation microstructures for different loading orientations, O-type nodes
constitute the largest fraction of the total nodes among all categories. Combining O and
L2 nodes, we find that higher-order nodes (i.e., nodes that cannot result from a binary
collision) amount to approximately 50% of the nodes in the networks, indicating the
complexity of dislocation microstructure. This complexity cannot be explained solely by
the binary reaction between slip system pairs nor by second-order junctions defined as
glissile junctions interacting with forest dislocations (Madec and Kubin 2008), because
these mechanisms cannot produce O-type nodes. Thus, the abundance of O-type nodes
as shown in Fig. 8 suggests that other mechanisms are at play. One example of such
mechanisms is the assisted glissile mechanism, which was frequently observed in DDD
simulations, and will be presented in “Assisted glissile mechanism” section. This mecha-
nism involves a series of reactions between nodes within the microstructure, as opposed
to collisions between links. For these reasons, we conclude that dislocation networks are
more complex than assumed in previous theories.

Glissile+coplanar multiplication mechanism

We propose that the majority of A2 links for the [ 4 9 10] loading orientation are created
by reactions between coplanar slip systems, i.e., A3 + A6 = A2, as opposed to glissile

Fig. 8 Distribution of dislocation node types from network configurations at γd = 0.5%. In each
microstructure the total number of nodes is in the range of 3500–9000. See text for node type definitions
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reactions A3 + D6 = A2 and A6 + C3 = A2. Such a proposition may appear unfounded
at first, because when A2 links are produced via direct collisions between A3 and A6
links the resulting links must have both end nodes of type P as shown in Fig. 6b, and
such P-P links are only a small fraction of the data in Table 2. However, as we shall see
in details below, we have identified another two-step mechanism, which we refer to as
the glissile+coplanar mechanism, which we believe is key and provides the necessary pro-
cess to explain the variety of link types we observe. The glissile+coplanar mechanism
produces an A2 link connected to a coplanar node (P) and a collinear (L) node. Because
P-type nodes are quite mobile in the slip plane, they are able to encounter forest dislo-
cations intersecting the slip plane, causing subsequent reactions that converts the nodes
into other types. This mechanism can for instance lead to the creation of glissile (G) type
node, thus providing an explanation for the origin of the A2 links of the type G-L, that are
not at 60◦ orientation (see Table 2).
The glissile+coplanar mechanism is illustrated in Fig. 9a and operates as follows.

Consider a dislocation on slip system A3 which first encounters a forest dislocation
with Burgers vector b2 (which could be a dislocation on slip system B2 or a Lomer
junction with the same Burgers vector). The reaction between these two dislocations
will produce a dislocation on slip system A6, which is on the same plane as the A3
dislocation. (If the forest dislocation is on slip system B2, then this reaction is the
glissile reaction A3 + B2 = A6.) Because slip system A6 has a large Schmid fac-
tor under [ 4 9 10] loading, the A6 dislocation readily bows out and moves on the
slip plane. The A6 dislocation can then react with the same A3 dislocation which
also bows out on the same plane (A3 + A6 = A2). The result is an A2 link with a
P-type node and an L-type node, as illustrated in Fig. 9a. An example from DDD
is shown in Fig. 9b. Examining Table 2, we see 103 links with P and L nodes, sug-
gesting this mechanism is important for slip-free multiplication. Alternatively, A6 may
encounter another A3 dislocation on the same plane, and form an A2 link with both
nodes of P-type, an example of which is shown in Fig. 9c. There are 31 A2 links of
this type in Table 2. Additional support for the role of glissile+coplanar mechanism for
the slip-free multiplication is provided in Appendix B through performing specialized
simulations.
As a result of this process, we also believe that the A2 links that are not 60°

oriented are more likely the result of reactions involving A2 links created by the
coplanar mechanism (A3 + A6 = A2) than those from the direct glissile mechanism
(A3 + D6 = A2 or A6 + C3 = A2). This is because firstly, a coplanar (P) node is
actively dragged by the A3 and A6 links, hence it is free to move in any direction in
the slip plane, greatly enhancing its chance to collide with a forest dislocation lead-
ing to change of both node type and orientation. Secondly, it is unlikely that an A2
link formed by the glissile mechanism changes its character angle through interac-
tion with forest dislocations, because dislocations on A2 (as well as all the dislocations
on planes B, C and D) have very low Schmid factor, and are thus unlikely to bow
out and react. We note that the average length of A2 links with an orientation of
60° is about 75% of the average length of A2 links with other orientations. This sug-
gests that the A2 links formed by the direct glissile mechanism remain short compared
with those with coplanar nodes that move around on the slip plane without any line
constraint.
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Fig. 9 a Schematic of an A2 segment formed by a glissile+coplanar mechanism, following the glissile
junction formation shown in Fig. 6a, with i=A3, j=B2, k=A6. Both A3 and A6 are active and can bow out to
form a new A2 link. G, P and L refer to the type of link end nodes (see text). b Two consecutive DDD
snapshots showing the glissile+coplanar mechanism. Only dislocations on one plane of type A and
dislocations on slip system B2 are shown. c Two consecutive DDD snapshots showing the coplanar
(A3+A6=A2) mechanism. Only the dislocations on a single plane of type A are shown. In b and c, the scale
bar is in units of b = 0.255 nm, and the coloring scheme is consistent with a

Assisted glissile mechanism

In the previous sections we presented the direct glissile and glissile+coplanar mechanisms
as two mechanisms that can lead to slip-free multiplication, with the latter able to operate
even in loading orientations where the former is not possible. In this section, we discuss
yet another slip-free multiplication mechanism which we have frequently observed in our
DDD simulations, and show how it creates a node connecting three glissile dislocation
links. As for the preceding sections, this mechanism provides additional support for the
complex evolution of the dislocation network during plastic deformation.
As an example, let us consider the [ 1 1 1] loading orientation, in which slip systems A2,

C5, D4 have zero Schmid factor and experience slip-free multiplication. Dislocations on
each of the three slip systems can be produced by direct glissile reactions between dis-
locations on active slip systems, for example: A3+D6=A2, A3+C1=C5, C1+D6=D4. Note
that slip systems i=A3, j=C1, and k=D6 all have the maximum Schmid factor. Figure 10a
shows the slip planes and Burgers vectors labeled using SB notation. Consider the situa-
tion shown in Fig. 10b where a dislocation on slip system i has reacted with a dislocation
on slip system j (A3+C1=C5), and also with a dislocation on slip system k (A3+D6=A2),
but the two dislocations on j and k have not yet collided. In our DDD simulations, we
find that in such a situation the glissile junctions A2 and C5 often extend along their
line direction until they meet at the apex of the tetrahedron, creating a 4-arm node con-
necting dislocations A2, C5, D6, and C1, as shown in Fig. 10c. The new 4-arm node is
unstable and quickly splits into two nodes that are connected to each other with a link on
the D4 slip system, as shown in Fig. 10d. Since the dislocation link on D4, which could
alternatively result from a direct glissile reaction between slip systems j and k, is instead
formed through the interaction with slip system i, we call this mechanism the assisted
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Fig. 10 a The slip planes (A, C, D) and Burgers vectors (b1, · · · , b6) in the SB notation. Note that the A, B, C, D
labels in the SB notation do not match those in the Thompson tetrahedron notation. b A dislocation on slip
system i=D6 involved in two glissile reactions with slip systems j=A3 and k=C1: D6+A3=A2 and D6+C1=D4.
G refers to the type of the nodes. c The two glissile junctions A2 and C5 meet at the apex of the tetrahedron,
forming a 4-arm node. This node is O-type. d The 4-arm node splits into two 3-arm nodes connected by a
dislocation link on slip system D4. The node on the apex of the tetrahedron is connected to three 60◦
dislocations on slip systems A2, D4 and C5

glissile mechanism. An interesting consequence of the assisted glissile mechanism is that
the node at the apex of the tetrahedron is connected to three 60◦ dislocations on three
slip systems (A2, D4, C5) all having zero Schmid factor. Furthermore, all three dislocation
links (A2, D4, C5) have one end node of G-type and the other node of O-type.
The assisted glissile mechanism can also operate for other combinations of (i, j, k) slip

systems as long as they belong to three different slip planes. For example, in the case of
[ 4 9 10] loading orientation, the combination of i =C1, j =D6 and k =A3 would result in
an A2 link that is connected to A3 and D6 links on one end, while being connected to C5
and D4 links on the other. This A2 link has a character angle of 60◦ and is characterized
as G-O type. Hence, the assisted glissile mechanism is an example of a series of reactions
by which a glissile node can transform into a more complex configuration (e.g., those in
Table 2 categorized as G-O links). Note that the assisted glissile mechanism still enforces
the 60◦ orientation of the glissile links. This supports the picture of the dislocation net-
work primarily consisting of nodal structures that are not the result of binary reactions
between oridinary dislocations on the 12 slip systems.

Discussion
Dependence of multiplication rate on Schmid factors

In “Correlation between microstructural features on different slip systems” section we
showed that a necessary condition for appreciable dislocation multiplication on slip sys-
tem i to occur is |Si−0.5 Simax | > 0.1. Here we interpret themeaning of this rule-of-thumb,
which was obtained empirically based on the data in Fig. 4. For simplicity, we limit the
discussions in this section to the slip plane which contains the dominant slip system. For
other slip planes, discussions are still valid as long as Simax of that plane is sufficiently
high to cause dislocations multiplication. Recall that Simax is the maximum Schmid fac-
tor among the three slip systems coplanar with i, which we denote as i′ and i′′. According
to the rule-of-thumb, multiplication is greatest on slip system i if either Si ≈ Simax or
Si ≈ 0. Furthermore, we find that multiplication is minimized when Si ≈ 0.5 Simax . To help
interpret the meaning of this expression, consider the schematic shown in Fig. 11, which
shows the glide plane with the relative orientations of the Burgers vectors for slip systems
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Fig. 11 Schematics of relative orientation of applied shear stress, τ = t − (t · n)n, where n and t are unit
vectors denoting the normal to plane containing slip systems i, i′ and i′′ , and the loading orientation,
respectively. a Si = Simax corresponding to rightmost boundary of blue data points in Fig. 4b; in this case
system i experiences slip-driven (i.e. regular) multiplication. b Si − 0.5Simax = 0 corresponding to the
boundary between blue and red data points in Fig. 4b; in this case multiplication on system i is minimum. c
Si = 0 and Si′ = Si′′ = Simax corresponding to leftmost boundary of red data points in Fig. 4b; in this case
slip-free multiplication on system i can occur

i, i′, and i′′, and the applied shear stress in three cases: (a) Si = Simax , (b) Si = 0.5 Simax ,
and (c) Si = 0. These three cases correspond to (a) the rightmost boundary line of blue
data points, (b) the boundary line between red and blue data points and (c) the left-
most boundary line of red data points, in Fig. 4b. Clearly when Si ≈ Simax , slip system
i is most active so that it will experience slip-driven multiplication. On the other hand,
when Si ≈ 0.5 Simax , Fig. 11b shows that either i′ or i′′ has the largest Schmid factor and
will experience slip-driven multiplication, but neither i nor the other inactive slip sys-
tem is expected to experience multiplication according to Fig. 4b. Finally, in the Si ≈ 0
case which corresponds to a large fraction of slip-free multiplication as shown by Fig. 4b,
Fig. 11c shows that Simax ≈ Si′ ≈ Si′′ . Accordingly, we expect that slip systems i′ and i′′ will
be equally active. As a result, coplanar collisions between i′ and i′′ are likely, which results
in the generation of dislocations on slip system i. Based on this reasoning, we see that a
large fraction of slip-free multiplication may simply be the result of coplanar collisions
between equally driven slip systems.
The scenario shown in Fig. 11c occurs in high symmetric loading orientations, i.e, ori-

entations close to the three corners of the stereographic triangle, as well as orientations
that are close to the [ 0 1 1]−[ 1 1 1] edge (e.g., [ 4 9 10]), as shown in Fig. 5a. Slip sys-
tems in the other loading orientations, e.g. those closer to the center of the stereographic
triangle, exhibit the scenario of either Fig. 11a or b. Hence, the distinction between multi-
plication types based on Schmid factors as shown in Fig. 11 is consistent with the fraction
of dislocation density on slip systems showing slip-free multiplication as shown in Fig. 5.

Modification to Kocks-Mecking model of dislocation multiplication

The Kocks-Mecking model (Mecking and Kocks 1981) for dislocation multiplication
expresses the rate of change of the total dislocation density ρ with shear strain γ in the
following form:

dρ

dγ
= c1

b
√

ρ − c2ρ (2)

where c1 and c2 are dimensionless constants and b is the magnitude of the Burgers vector.
It was subsequently generalized to describe dislocation multiplication on individual slip
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systems (Devincre et al. 2008). In our recent study (Akhondzadeh et al. 2020), we found
that a correction term needs to be added to the generalized Kocks-Mecking relation, lead-
ing to the following expression for the dislocation multiplication rate on slip system i:

ρ̇i = γ̇i

(
c̃1
b

√
a′
ijρj − c̃2 ρi

)
+ c̃3

b
(
γ̇i′

√
ρi′′ + γ̇i′′

√
ρi′

)
(3)

where the first term is the generalized Kocks-Mecking expression (Devincre et al. 2008)
and the second term is the correction to account for slip-free multiplication (i.e., con-
tribution to ρ̇i even when γ̇i = 0). In Eq. (3) a′

ij are interaction coefficients between slip
systems i and j, and c̃1, c̃2 and c̃3 are dimensionless parameters that depend on the loading
orientation.
While the correction term in Eq. (3) was motivated by the need to describe the dislo-

cation density data from a large set of DDD simulations (Akhondzadeh et al. 2020), the
findings in this work provide a mechanistic explanation for the coplanar form of the cor-
rection term (involving i′ and i′′). If, on the other hand, one assumes that the slip-free
multiplication is mainly the result of the direct glissile mechanism, then the modified
Kocks-Mecking relation would take the following form (Stricker and Weygand 2015),

ρ̇i = γ̇i

(
c̃1
b

√
a′
ijρj − c̃2 ρi

)
+ c̃3

b
∑

(m,k)∈Gi

(
γ̇m

√
ρk + γ̇k

√
ρm

)
(4)

where m and k are the slip systems that can react to form a glissile junction on slip sys-
tem i, according to Table 1. In Eq. (4), the repeated index j = 1, ..., 12 is summed over, but
the indices i,m and k are not. However, we can see that for loading orientations such as
[ 0 1 1] and [ 4 9 10], Eq. (4) is not consistent with the DDD data, because there is no slip
system pair that can form glissile junctions on slip system i (e.g., A2) with both systems
active in the pair (i.e., with appreciable γ̇m, γ̇k , and ρm, ρk). In comparison, Eq. (3) is able
to account for slip-free multiplication in these orientations. Furthermore, Eq. (3) implies
that slip-free multiplication occurs only when both of the other two slip systems on the
same slip plane are active. This condition for which slip system can exhibit slip-free multi-
plication is indeed confirmed in our DDD simulations along all except one of the loading
orientations.4 As a result, when slip-free multiplication occurs in one slip system, then it
is always observed that multiplication occurs in all three coplanar slip systems. This dis-
cussion demonstrates the value provided by mechanistic insight available through DDD
when developing coarse-grained theories for dislocation dynamics.
In “Glissile+coplanar multiplication mechanism” section we showed how the glis-

sile+coplanar mechanism brings dislocations on slip systems i′ and i′′ to the same plane
to react and form dislocations on slip system i. For i = A2 in the [ 4 9 10] (as well as [ 0 1 1])
orientation, this requires the presence of forest dislocations with Burgers vector b2, such
as dislocations on slip system B2. However, dislocations on B2 are not consumed in the
glissile+coplanar reactions described in “Glissile+coplanar multiplication mechanism”
section. Instead, they act as catalysts to bring dislocations on i′=A3 and i′′=A6 slip sys-
tems to the same plane to react. Therefore, in Eq. (3) the correction term only involves
the plastic shear strain rate on the coplanar slip systems, γ̇i′ and γ̇i′′ , although the coeffi-
cient c̃3 may depend on the dislocation density on slip system B2. Additional research is

4The exception is for loading along [ 8 9 10] where slip systems D4 and D6 exhibit slip-free multiplication, while on the
plane D, only D1 is active. Although slip systems on plane D multiply, slip systems on plane A have higher multiplication
rates.
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necessary to continue to optimize the functional form of these terms and determine
strategies for obtaining values for the relevant parameters.

Importance and robustness of slip-free multiplication

In this work, we have attempted to elucidate the importance, pervasiveness, and origins
of slip-free multiplication. We find that slip-free multiplication constitutes a significant
fraction of the total dislocation density under multi-slip conditions (e.g., loading axes near
the corners of the stererographic triangle, see Fig. 5b). Given that both the flow stress and
the dislocation line tension are influenced by the total dislocation density (Anderson et al.
2017; Cai and Nix 2016), slip-free multiplication is expected to play a major role in metal
plasticity. Furthermore, we expect that slip-free multiplication is operative in polycrys-
taline solids, since the multiaxial stress state within each grain typically activates multiple
slip systems (Argon 2008; Kocks 1970). With that said, we note that all of our results here
correspond to uniaxial loading; additional research is necessary to understand slip-free
multiplication in more complex loading scenarios. For example, slip-free multiplication
could be important in scenarios where the loading axis is changed (e.g., latent hardening
experiments), so that a previously inactive and slip-free slip system becomes activated.
In our analysis above, we concluded that coplanar reactions are an important con-

tributor to slip-free multiplication. At first glance, we may therefore conclude that
slip-free multiplication via coplanar reactions would be rather limited, since such reac-
tions require dislocations to be on the same (or very close) atomic planes. However, the
glissile+coplanar and assisted glissile mechanisms demonstrate how other interactions
within the network can “bring” dislocations together on the same glide plane, thereby
enabling coplanar reactions. These mechanisms provide examples where it is incorrect
to view slip system interactions simply on the basis of slip system pairs; Both the glis-
sile+coplanar mechanism and the assisted glissile mechanisms involve three or more slip
systems.
Finally, our analysis uncovers the role of the coplanar interaction as a key mediator for

dislocation multiplication, thereby complementing the conventional view in which copla-
nar reactions are limited to dipolar, elastic interactions between dislocations on separate,
parallel slip planes (Madec et al. 2003; Kubin et al. 2008a; 2008b).

Conclusion
We analyzed the DDD simulation results of 120 loading orientations in the absence of
cross-slip, to investigate the relationship between dislocation multiplication and plastic
shear rate, γ̇i. We observed that while the plastic strain rates γ̇i on slip systems are gen-
erally not correlated with one another, dislocation densities ρi on coplanar slip systems
are correlated. Specifically, some slip systems multiply under zero shear strain rate, a phe-
nomenon we refer to as slip-free multiplication. We observed that all the slip systems i
which exhibit dislocation multiplication satisfy the rule-of-thumb |Si − 0.5Simax | > 0.1.
By analyzing the case of [ 4 9 10] loading orientation in detail, we demonstrated that the

direct glissile mechanism is unable to explain slip-free multiplication for certain loading
orientations. We then proposed the glissile+coplanar mechanism, which could explain
the observed slip-free multiplication. The mechanisms justify a correction term to the
Kocks-Mecking model for dislocation multiplication that depends on the plastic strain
rate on coplanar slip systems. By analyzing the node connectivity of links on slip systems
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showing slip-free multiplication, we observed that most of these links are not the result
of a simple reaction between ordinary dislocations on the 12 slip systems. Instead, they
are the results of a series of dislocation reactions, such as the assisted glissile mechanism,
leading to a dislocation network with a complex connectivity. All together, our results
motivate the need for a deeper analysis of dislocation network topology which can act as
a guide for physics-based constitutive theory development.

Appendix A Simulation parameters
Table 3 lists all the input simulation parameters used in creating the DDD database as
explained in Akhondzadeh et al. (2020).

Appendix B Confirming the necessity of coplanar reaction in the [4 9 10]
orientation
According to the coplanar mechanism proposed in “Glissile+coplanar multiplication
mechanism” section for the [ 4 9 10] orientation, the multiplication of dislocations on slip
system A2 requires an out-of-plane (forest) dislocation with Burgers vector b2, which
brings two dislocations on A3 and A6 slip systems to the same plane in order to react
and form A2. In the initial configuration for a DDD simulation, such forest dislocations
should mostly consist of dislocations on slip system B2. On the other hand, if the direct
glissile mechanism (A3 + D6 = A2 and A6 + C3 = A2) is responsible for the slip-free mul-
tiplication, we would expect that the presence of slip system B2 is not necessary and A2
would still multiply if only slip systems A3, A6, C3 and D6 are present.
In order to test the role of the coplanar mechanism for slip-free multiplication, we

performed a DDD simulation along the [ 4 9 10] loading orientation starting from an unre-
laxed initial configuration which only contains dislocations on the A2, A3, A6, C3 and
D6 slip systems. To enable a fair comparison, we also repeated the same simulation along
[ 4 9 10] as shown in Fig. 7 where all 12 slip systems are present, but starting from an
unrelaxed initial configuration. Figure 12 shows the evolution of dislocation density ρi
on A2 slip system in these simulations. It can be seen that dislocations on A2 do not
multiply, if the initial configuration consists only of those slip systems (C3 and D6)

Table 3 Summary of DDD simulation parameters. For more details, see Sills et al. (2016)

Property Parameter Value

Shear modulus μ 54.6 GPa

Poission’s ratio ν 0.324

Burgers vector magnitude b 0.255 nm

Drag coefficient B 15.6 μPa.s

Core radius a 6b

Relative tolerance ftol 0.1b

Absolute tolerance rtol 10b

Threshold tolerance rth 1b

Max segment length lmax 2000b

Min segment length lmin

√
4√
3
Amin

Max area between segments Amax
1
2

(
4Amin +

√
3
4 l2max

)

Min area between segments Amin min(2rtol lmax,
√
3
4 l2min)

Collision radius rcol 10b

Simulation cell size 15μm
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Fig. 12 Evolution of ρi for i =A2 from four DDD simulation along the [ 4 9 10] loading orientation with an
unrelaxed initial configuration that only contains a subset of slip systems as shown in the legend

involved in the direct glissile mechanism. However, by adding dislocations on the slip
system B2 to this initial configuration, A2 multiplies at a rate of approximately 20% of
the normal simulation. We confirmed that adding a different sixth slip system other than
B2, would result in minimal multiplication of A2 slip system. We take this behavior as
an indication of the essential role that the glissile+coplanar mechanism plays in the slip-
free multiplication. It is interesting to note that by removing slip systems C3 and D6
from the initial configuration (that is, removing the possibility of A2 formation via glissile
junction formation), A2 slip system shows multiplication of more than 60% of a normal
simulation. One possible explanation for such behavior is that inclusion of more slip sys-
tems, increases the density of dislocation with b2 Burgers vector (other than dislocations
on B2 system), hence, increasing the rate of glissile+coplanar mechanism. For example,
reaction of slip systems C5 and D4 result in a Lomer junction with Burgers vector b2.
Another explanation could be that there are other mechanisms at play, responsible for
slip-free multiplication on A2 which involves a series of reactions between different slip
systems.

Acknowledgements
Part of the DDD simulations were performed using allocation MSS190011 on the SDSC Comet-GPU and PSC Bridges-GPU
clusters of the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by National
Science Foundation grant number ACI-1548562.

Authors’ contributions
S.A. and W.C. designed research, performed research and analyzed data; all authors interpret the data and wrote the
paper. The author(s) read and approved the final manuscript.

Funding
This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Award No. DE-SC0010412 (Sh. A. and W. C.). Part of N.B.’s work was performed under the auspices



Akhondzadeh et al. Materials Theory             (2021) 5:2 Page 23 of 24

of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. R.B.S.
was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a
multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

Availability of data andmaterials
The dataset used and analyzed during the current study is available at https://gitlab.com/micronano_public/ParaDiS_
Database.

Competing interests
The authors declare no competing interests.

Author details
1Department of Mechanical Engineering, Stanford University, Stanford CA, 94305, USA. 2Lawrence Livermore National
Laboratory, Livermore CA, 94550, USA. 3Department of Materials Science and Engineering, Rutgers University, Piscataway
NJ, 08854, USA.

Received: 30 June 2020 Accepted: 25 November 2020

References
S. Akhondzadeh, R. B. Sills, N. Bertin, W. Cai, Dislocation density-based plasticity model from massive discrete dislocation

dynamics database. J. Mech. Phys. Solids. 145, 104152 (2020)
P. M. Anderson, J. P. Hirth, J. Lothe, Theory of dislocations, 2017th edn. (Cambridge University Press, Cambridge, 2017)
A. S. Argon, Strengtheningmechanisms in crystal plasticity. No. 4 Oxford Series onMaterials Modelling. (Oxford University

Press, Oxford; New York, 2008)
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, V. V. Bulatov, Enabling strain hardening

simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15(6), 553 (2007)
N. Bertin, S. Aubry, A. Arsenlis, W. Cai, Gpu-accelerated dislocation dynamics using subcycling time-integration. Model.

Simul. Mater. Sci. Eng. 27(7), 075014 (2019)
V. V. Bulatov, W. Cai, Computer simulations of dislocations. (Oxford University Press, Oxford, 2006)
W. Cai, W. D. Nix, Imperfections in crystalline solids. (Cambridge University Press, Cambridge, 2016)
B. Devincre, T. Hoc, L. P. Kubin, Collinear interactions of dislocations and slip systems. Mater. Sci. Eng. A. 400, 182–185

(2005)
B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science. 320(5884), 1745–1748

(2008)
P. Franciosi, M. Berveiller, A. Zaoui, Latent hardening in copper and aluminium single crystals. Acta Metall. 28(3), 273–283

(1980). https://doi.org/10.1016/0001-6160(80)90162-5
K. Higashida, J.-I. Takamura, N. Narita, The formation of deformation bands in FCC crystals. Mater. Sci. Eng. 81, 239–258

(1986)
J. P. Hirth, On dislocation interactions in the FCC lattice. J. Appl. Phys. 32(4), 700–706 (1961). https://doi.org/10.1063/1.

1736074
U. F. Kocks, The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B. 1(5),

1121–1143 (1970). https://doi.org/10.1007/BF02900224
L. Kubin, Dislocations, mesoscale simulations and plastic flow. (Oxford University Press, Oxford, 2013). https://doi.org/10.

1093/acprof:oso/9780198525011.001.0001
L. Kubin, B. Devincre, T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta

Mater. 56(20), 6040–6049 (2008)
L. Kubin, B. Devincre, T. Hoc, Toward a physical model for strain hardening in FCC crystals. Mater. Sci. Eng. A. 483, 19–24

(2008)
L. P. Kubin, R. Madec, B. Devincre, Dislocation intersections and reactions in FCC and BCC crystals. MRS Proceedings. 779,

1–6 (2003). https://doi.org/10.1557/PROC-779-W1.6
R. Madec, B. Devincre, L. Kubin, T. Hoc, D. Rodney, The role of collinear interaction in dislocation-induced hardening.

Science. 301(5641), 1879–1882 (2003)
R. Madec, L. P. Kubin, Second-order junctions and strain hardening in BCC and FCC crystals. Scr. Mater. 58(9), 767–770

(2008)
H. Mecking, U. Kocks, Kinetics of flow and strain-hardening. Acta Metall. 29(11), 1865–1875 (1981)
F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, D. Raabe, Overview of constitutive laws, kinematics,

homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments,
applications. Acta Mater. 58(4), 1152–1211 (2010). https://doi.org/10.1016/j.actamat.2009.10.058

R. B. Sills, A. Aghaei, W. Cai, Advanced time integration algorithms for dislocation dynamics simulations of work
hardening. Model. Simul. Mater. Sci. Eng. 24(4), 045019 (2016)

R. B. Sills, N. Bertin, A. Aghaei, W. Cai, Dislocation networks and the microstructural origin of strain hardening. Phys. Rev.
Lett. 121(8), 085501 (2018)

M. Stricker, D. Weygand, Dislocation multiplication mechanisms–glissile junctions and their role on the plastic
deformation at the microscale. Acta Mater. 99, 130–139 (2015)

https://gitlab.com/micronano_public/ParaDiS_Database
https://gitlab.com/micronano_public/ParaDiS_Database
https://doi.org/10.1016/0001-6160(80)90162-5
https://doi.org/10.1063/1.1736074
https://doi.org/10.1063/1.1736074
https://doi.org/10.1007/BF02900224
https://doi.org/10.1093/acprof:oso/9780198525011.001.0001
https://doi.org/10.1093/acprof:oso/9780198525011.001.0001
https://doi.org/10.1557/PROC-779-W1.6
https://doi.org/10.1016/j.actamat.2009.10.058


Akhondzadeh et al. Materials Theory             (2021) 5:2 Page 24 of 24

M. Sudmanns, M. Stricker, D. Weygand, T. Hochrainer, K. Schulz, Dislocation multiplication by cross-slip and glissile
reaction in a dislocation based continuum formulation of crystal plasticity. J. Mech. Phys. Solids. 132, 103695 (2019).
https://doi.org/10.1016/j.jmps.2019.103695

D. Weygand, Mechanics and dislocation structures at the micro-scale: Insights on dislocation multiplication mechanisms
from discrete dislocation dynamics simulations.MRS Proceedings, 1651, Mrsf13-1651-kk07-02. (2014). https://doi.org/
10.1557/opl.2014.362

L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, N. Bertin, N. R. Barton, R. Freitas, V. V. Bulatov, Atomistic insights into metal
hardening. Nat. Mater. 1–6 (2020). Nature Publishing Group

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.jmps.2019.103695
https://doi.org/10.1557/opl.2014.362
https://doi.org/10.1557/opl.2014.362

	Abstract
	Introduction
	Simulations setup
	Data analysis
	Correlation between microstructural features on different slip systems
	Occurrence and quantification of slip-free multiplication

	Physical analysis of slip-free multiplication
	Analysis of different loading orientations
	Topology and complexity of the dislocation networks
	Glissile+coplanar multiplication mechanism
	Assisted glissile mechanism

	Discussion
	Dependence of multiplication rate on Schmid factors
	Modification to Kocks-Mecking model of dislocation multiplication
	Importance and robustness of slip-free multiplication

	Conclusion
	Appendix A Simulation parameters
	Appendix B Confirming the necessity of coplanar reaction in the [4 9 10] orientation
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

