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Abstract

Growth and other dynamical processes in soft materials can create novel types of
mesoscopic defects including discontinuities for the second and higher derivatives of
the deformation, and terminating defects for these discontinuities. These higher-order
defects move “easily", and can thus confer a great degree of flexibility to the material.
We develop a general continuummechanical framework from which we can derive
the dynamics of higher order defects in a thermodynamically consistent manner. We
illustrate our framework by obtaining the explicit dynamical equations for the next
higher order defects in an elastic body beyond dislocations, phase boundaries, and
disclinations, namely, surfaces of inflection and branch lines.

Introduction
Hyperbolic sheets abound in nature (see Fig. 1). As Margaret Wertheim writes in her
delightful essay “Corals, crochet and the cosmos: how hyperbolic geometry pervades the
universe" (Wertheim 2016) – We have built a world of largely straight lines – the houses
we live in, the skyscrapers we work in and the streets we drive on our daily commutes. Yet
outside our boxes, nature teems with frilly, crenellated forms, from the fluted surfaces of
lettuces and fungi to the frilled skirts of sea slugs and the gorgeous undulations of corals.
A natural question is – Why these shapes? One suggestion is that cells in living organ-

isms proliferate to “maximize" their number (area) subject to any applicable constraints
(Wertheim 2016) and this naturally results in hyperbolic geometries. This is a “static"
argument which relates the mechanisms of growth to the resulting (quasi-2D) intrinsic
geometry of living organisms. In this paper, we attempt to go beyond this “static" argu-
ment and developmodels, based on thermodynamic considerations, to gain a quantitative
understanding of the interplay between growth, mechanics and dynamics in soft objects.
These models have the potential to describe the dynamical processes that result in the
observed intricate three-dimensional (i.e. extrinsic) morphologies in nature.
Particularly striking examples of dynamical behaviors in organisms with differential

growth (hyperbolic geometries) occur in sea slugs (Nudibranchia) and marine flatworms
(Polycladida). These marine invertebrates are found in many environments, particularly
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Fig. 1 Examples of naturally occurring non-Euclidean elastic sheets

in coral reefs. While most of them crawl on the sea floor, a few are capable of free swim-
ming (Newman 2003). They move/swim by sending waves of undulations from the front
to the back along their skirts (for sea slugs) or across their entire body (for flatworms).
Figure 2 shows 4 frames from a video of a free-swimming sea slug (Jones 2010). The geom-
etry of the slug is clearly hyperbolic. It has multiple undulations and undergoes significant
bending deformations in the course of one swim cycle. While it is hard to quantify the
strains within the organism it is not unreasonable to consider them small in comparison
to the obvious large rotations/twist of the body.
In a different context, the interplay between growth and dynamics is also relevant to the

development of leaves, flowers and other plant tissues that can be modeled as thin lam-
inae (Liang and Mahadevan 2009; Boudaoud 2010; Liang and Mahadevan 2011; Goriely
2017; Sharon and Sahaf 2018). Laboratory experiments using hydrogels (Klein et al. 2007;
Kim et al. 2012; Levin et al. 2019) have led to a semi-quantitative understanding of time-
dependent, dissipative deformations of thin soft materials with a prescribed prestrain. In
living organisms, however, the prestrain is not prescribed a priori, and how the prestrain
development may be related to mechanics is not clear. Complicated physico-chemical
processes are involved that need to be incorporated into mathematical models. It there-
fore seems reasonable to derive systematic constraints on the mathematical description
based on a careful consideration of the non-standard kinematics involved and the general
principles of continuum thermomechanics.
Earlier work, reviewed briefly in “Statics and equilibria of non-Euclidean elastic

sheets” section, implicates higher-order defects, in contrast to disclinations and dis-
locations, as playing a key role in the mechanics of intrinsically hyperbolic elastic
sheets (Gemmer and Venkataramani 2011; 2013; Gemmer et al. 2016; Shearman and

Fig. 2 A free swimming sea slug Hexabranchus Sanguineus. The frames are 2s apart. Images used with
permission from the copyright holders of the original video (Jones 2010)
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Venkataramani, in preparation). This points to the need for tools to describe the evo-
lution of (terminating) discontinuities of the second-gradient of the displacement field -
when viewed at the macroscopic scale - for a proper description of the soft material defor-
mations involved. It turns out that, within a continuum mechanical perspective, this fits
in nicely within the question of describing the coupled mechanics of discontinuities and
singularities of the elastic displacement field and its higher derivatives up to order three.
This is the question that is addressed in this paper.
While, as evident from Fig. 2, it is natural, and necessary, to consider unrestricted finite

deformations when dealing with soft materials, we restrict attention to ‘small deformation’
kinematics in this first effort due to the extra subtleties involved with higher order defect
kinematics. Thus, we consider deformations of a fixed reference configuration that may
or may not be stress-free. When the configurations attained by the system remain in close
proximity to this fixed configuration, this is an adequate assumption. We consistently
invoke Occam’s razor as a guiding principle in our development - for instance, we restrict
to the use of only ordinary stresses and couple stresses since forces and moments are the
only agents of mechanical stimuli that we have some intuition for. Similarly, if branch
point and surface defect velocities are to be the only dissipative mechanisms requiring
constitutive specification without involving their spatial derivatives, then it turns out that
the appropriate variables for the analysis of thermodynamics is in terms of the ‘singular
parts’ of the first and higher order displacement gradients, instead of the more natural
singular parts of the corresponding elastic distortion gradients that naturally arise in the
analysis of defect kinematics. This is in sharp contrast to dislocation and g.disclination
mechanics (Acharya and Fressengeas 2015) where this distinction does not arise because
of the relatively lower order kinematics involved. We develop the relationship between
the two types of entities in this paper.
In this article, we develop a framework from which we can derive the dynamics

of higher order defects in a thermodynamically consistent manner. In particular, the
framework is applicable to the motivating problems in this Introduction, namely the
dynamics of Non-Euclidean (i.e. incompatible) sheets. Our framework can accommo-
date the specific details of the continuum mechanics of various applications. It can
describe the evolution of defects in incompatible elasticity and the elastodynamics of
growing bodies. It can also describe plastic deformation resulting from moving dis-
locations and disclinations and analogous behaviors from the motion of higher order
defects. We expect that, with the appropriate choices of thermodynamic potentials and
kinetic coefficients, our framework will be useful for problems governed by the inter-
play between growth, defects, thermodynamics and the balance laws of continuum
mechanics.

Statics and equilibria of non-Euclidean elastic sheets
One approach to modeling the mechanics of a growing hyperelastic body, borrowed from
the literature of finite elastoplasticity, is to assume a reference configurationS and a defor-
mation y : S → R

3 along with amultiplicative decomposition of the deformation gradient
F = ∇y as F = EG (or F = FeFp in the plasticity literature) where the two-point tensor
G models the effect of the growth processes in the material and E is the “residual" elas-
tic deformation (Goriely 2017). The energy of the configuration defined by y is then given
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by
∫
W (E) = ∫ W (FG−1), where W denotes a hyperelastic energy density, vanishing

on SO(3) (Goriely 2017; Lewicka et al. 2014). In particular, the material is “stress-free"
if FG−1 ∈ SO(3), although, for a general G, there might not be any deformation of the
body y : S → R

3 whose gradient is a rotation times G. Such objects, with no stress-free
configurations in R

3, lead to incompatible elasticity.
The non-Euclidean formalism of thin sheet elasticity (Efrati et al. 2009) is a reduced

dimensional description of thin elastically incompatible objects. The reference manifold
S = �×[− t

2 ,
t
2 ], where t, the thickness, is “small" compared to the “in-plane” dimensions

of the center surface� ⊂ R
2. In this setting, the effect of the growth has a reduced dimen-

sional description as a 2-manifold (�, g, b) where g, b are symmetric (0, 2) tensors. These
tensors denote, respectively, the ‘target’ 1st and 2nd fundamental forms of the stress-free
state of the sheet, pulled back to the reference manifold (Efrati et al. 2009). This frame-
work also applies to incompatible elasticity (Ben Amar and Goriely 2005; Lewicka et al.
2014; Bhattacharya et al. 2016) where, in general, there exists no deformation f : � → R

3

realizing a surface in ambient three-dimensional space whose first and second fundamen-
tal forms match (the push-forward of) the targets g, b (by f ), i.e., incompatible sheets have
no stress-free configurations in our three dimensional space.
Assuming the Kirchhoff-Love hypothesis (Fung 1965), so that the (3D) deformation

of a thin sheet is determined by the (2D) mapping y : � → R
3 on the center surface.

This allows for an asymptotic expansion of the elastic energy as a sum of stretching and
bending contributions (Efrati et al. 2009; Efrati et al. 2013) :

Et[ y]=
∫

�

[

t Q3(∇yT · ∇y − g) + t3

12
Q3(∇yT · ∇N − b)

]

dA, (1)

where the oriented normal field N : � → S2, also called the Gauss Normal map (Stoker
1989), is obtained from∇yT ·N = 0.Q3 is a non-degenerate quadratic form, on symmetric
2 × 2 matrices, that depends on the Poisson’s ratio ν of the material (Efrati et al. 2009),
and dA is the area element on (�, g).
For various choices of g and b and boundary conditions, the energy functional (1)

describes a variety of phenomena in thin sheets, including multiple-scale buckling in free
sheets with ‘excess length’ near an edge, e.g. torn plastic or flat leaves treated with an
Auxin near the edge (Sharon et al. 2002; Sharon et al. 2007; Sharon et al. 2004). The
excess length near the edge is modeled by a metric g with negative intrinsic curvature
(Efrati et al. 2013).
Starting with a fully 3D elastic energy, Lewicka and Pakzad (Lewicka and Reza

Pakzad 2011) have obtained a reduced dimensional model for the limit t → 0 using
�–convergence. In particular, they showed that

�- lim
t→0

Et[ y]
t3

= E∗[ y]= 1
12

⎧
⎨

⎩

∫
�
Q2(∇yT · ∇N − b) dA if∇yT · ∇y − g = 0 a.e

+∞ otherwise.

for an appropriate quadratic form Q2. This energy has clear similarities with the energy
in (1), although the details are somewhat different. Nonetheless, in either framework, the
elastic energy scales like t3 in the thin limit t → 0 if and only if there exist finite bending
energy (mathematically y ∈ W 2,2) isometric immersions y : (�, g) → R

3.
What is the physical import of this theorem? The Gagliardo-Nirenberg-Sobolev

inequality (cf. Evans (1998)[§5.8.1]) implies thatW 2,2 surfaces with finite bending content
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have a “nearly continuous" tangent plane and normal, in the sense they cannot oscillate
“much" on small sets. More precisely, the normal map N : � → S2 is in BMO(�), and
the John-Nirenberg inequality (John and Nirenberg 1961) for BMO functions rules out
singularities that correspond to O(1) oscillations in the normal on arbitrarily small sets,
including sharp creases (folds), cone points (disclinations) or dislocations. Indeed the
energy of elastic ridges (Lobkovsky 1996; Venkataramani 2004; Conti and Maggi 2008),
Et ∼ t8/3, and d-cones (Ben Amar and Pomeau 1997; Cerda et al. 1999; Olbermann 2016),
Et ∼ t3 log(1/t), diverge on the scale t3, although the limiting shapes are ‘asymptotic’
isometries (Vella et al. 2015; Davidovitch et al. 2019) and arguably unstretched.

Branch points and lines of inflection

The preceding remark highlights the role of the regularity of isometries. Beyond the
existence/non-existence of isometries, it is crucial whether a candidate isometry is in
W 2,2. This motivates the problem:

Findy : � → R
3 such that

⎧
⎨

⎩

∇yT · ∇y = g and

B = ∫
�
Q(∇yT · ∇N − b) dA < ∞,

(2)

We have rigorous results showing that the problem (2) is flexible and solutions are
plentiful (Gemmer et al. 2016; Shearman and Venkataramani, in preparation) (with pre-
scribed zero-traction and moment boundary conditions, i.e. for free sheets). The proof is
constructive, and uses ideas from Discrete Differential Geometry DDG (Bobenko et al.
2008; Gemmer et al. 2016). This lack of uniqueness in admissible static configurations
with prescribed boundary conditions underscores the necessity of a dynamical model
to ‘choose’ between acceptable configurations and/or describe the transitions between
multiple admissible states (Gemmer and Venkataramani 2013).
If y : � → R

3 isC1, the Gauss Normal map is given byN = ∂1y×∂2y
‖∂1y×∂2y‖ , where ∂i = ∂

∂xi for
(arbitrary) coordinates (x1, x2) on�. Further, if y and g areC2, Gauss’ Theorema Egregium
implies that (2) is equivalent to the Monge-Ampere Exterior differential system (EDS)
(Ivey and Landsberg 2003, §6.4):

N · dy = 0, N∗(d�) = κ dA, κ ≡ κ[ g] is determined byg, (3)

where d� is the area form on the sphere S2 and κ is the Gauss curvature.
Classical results in differential geometry imply that smooth solutions of (3) with κ <

0 are hyperbolic surfaces and locally saddle shaped. In contrast, the curly mustard leaf
in Fig. 3b is “frilly", i.e buckled on multiple scales with a wavelength that refines (“sub-
wrinkles") near the edge (Sharon et al. 2004). This “looks" very unlike the smooth saddle
in Fig. 3a. If � ⊂ R

2 is a bounded domain with a smooth boundary, and g is a smooth
metric on � with negative curvature, g can be extended to a smooth metric ḡ on R

2

with Gauss curvature κ[ ḡ]< 0 decaying (as rapidly as desired) at infinity. The existence
of isometric immersions into R

3, of smooth metrics with decaying negative curvature
(Hong 1993), therefore implies that bounded smooth hyperbolic surfaces can be smoothly
and isometrically embedded in R

3. A smooth (C2 is sufficient) hyperbolic surface cannot
refine its buckling pattern and is thus “non-frilly" (Gemmer et al. 2016; Shearman and
Venkataramani, in preparation). Why do we see frilly shapes in natural surfaces, as in
Fig. 3b, rather than the smooth saddles of Fig. 3a?
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Fig. 3 Hyperbolic surfaces in R
3. The inscribed (geodesic) triangle in the smooth saddle has angles that sum

up to less than π , illustrating the connection between the extrinsic and intrinsic geometries – Gauss’
Theorema Egregium

We have addressed this puzzle in recent work (Gemmer and Venkataramani 2011;
Gemmer and Venkataramani 2012; Gemmer and Venkataramani 2013; Gemmer et al.
2016; Shearman and Venkataramani, in preparation) and the short answer is that, for a
given metric g, the frilly surfaces, somewhat counterintuitively, can have smaller bending
energy than the smooth saddle. It is true thatC2 (twice continuously differentiable) hyper-
bolic surfaces are saddle-like near every point. We find a topological invariant (Shearman
and Venkataramani, in preparation), the index of a branch point - intimately related
to the quantity

∫
�

α̂(3)n da that emerges in “Kinematics” section and the quantity � of
“The discontinuity of the deformation of a non simply connected domain with pre-
scribed third ‘deformation gradient” section - that distinguishes sub-wrinkled surfaces
from saddles locally. With branch points, the surfaces are only C1,1, but gain the addi-
tional flexibility to refine their buckling pattern, while lowering their energy (Gemmer et
al. 2016). This flexibility is not available to smooth saddles, and constitutes a key property
of branched (sub-wrinkled) surfaces (Gemmer et al. 2016; Shearman and Venkataramani,
in preparation).
Figure 4 shows the construction of a non-C2 monkey saddle (Gemmer and Venkatara-

mani 2011). starting from the quadratic surface w = x2 − 3y2. Cutting out the sector
|x| ≤ √

3|y| and then patching congruent copies of this sector by odd reflections

Fig. 4 AW2,2 hyperbolic surfaces in R
3 that is built by patching together (smooth) quadratic maps on the 6

sectors shown in (a). The straight lines in the surface (b) are the images of the straight lines in the unit disk (a).
The existence of such straight lines is a consequence of hyperboloids being doubly ruled surfaces
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gives a W 2,2 surface with a continuous normal vector and bounded curvature. The
“defects" in this surface include the point in the middle – a branch point and the 6 rays
through this point – lines of inflection, which together constitute the asymptotic skele-
ton of the surface (Shearman and Venkataramani, in preparation). This construction can
be extended to generate C1,1 hyperbolic surfaces with multiple distinct branch points,
and an interesting question is how these defects interact with and influence each other
(Gemmer et al. 2016).
Defects are of course ubiquitous in condensed matter systems. A key feature of defects

in systems driven by a free energy is that the energy density typically diverges in the
vicinity of a “bare" defect (and in some cases even the total energy diverges), and as a
consequence, defects are always regularized, i.e. “cored" in physical systems. This is true
for dislocations and disclinations in elastic objects, for creases in crumpled sheets, for
defects in liquid crystals and many other types of defects. Uniquely, branch points and
lines of inflection do not carry a singular energy density (Gemmer and Venkataramani
2011; Gemmer et al. 2016), and thus do not “need" a core for energetic reasons. Nonethe-
less, force and moment balance implies that these defects are indeed regularized into
boundary layers, of width t1/3, mediating jumps in the normal curvature (Gemmer and
Venkataramani 2012).
Branch points and lines of inflection are thus mesoscopic defects. They contain large

numbers of atoms (microscopic units) and are amenable to a continuum description, but
are yet much smaller than the typical size of the sheet. Arguments from energy mini-
mization, while implying the existence of these higher order defects, do not address the
question of their evolution. One has to necessarily go beyond the elastic energy (1) and
incorporate dissipative effects that are crucial in determining a thermo-mechanically con-
sistent description of the coupled evolution of the shape y : � → R

3 and the internal
geometry, given by the tensors g and b.

Notation
We define the notation employed in the paper in one place for convenience.
When a function on a domain is discontinuous across a (non-planar) surface S, we

assume that its values along any sequence of points from either side of the surface
approaching any fixed point on the surface take on a unique pair of limiting values,
each element in the pair corresponding to the limit from one side. The difference of
these limiting values, one for each point on the surface, is defined as the jump (denoted
by �·�) of the function on the surface. If ν(x) is the unit normal to S at x ∈ S, we
say that x± is a point on the ± side of S at x depending on (x± − x) · ν(x) ≷ 0,
respectively.
We think of an nth order tensor as a linear transformation between the space of vectors

(in the translation space of three-dimensional Euclidean space, also 1st-order tensors) to
the space of (n−1)th-order tensors, with its transpose defined in the natural way as being
a linear transformation from the space of (n−1)th-tensors to the space of vectors. All ten-
sors components will be written w.r.t. the basis, (e1, e2, e3) of a fixed rectangular Cartesian
coordinate system and all partial derivatives, denoted often by a subscript comma, will be
w.r.t coordinates of this system. The Einstein summation convention will be used unless
otherwise stated. Superposed dots will represent partial derivatives w.r.t. time. If A is a
pth-order tensor then the operators ∇ , div, curl may be defined as
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∇A = Ai1...ip,k ei1 ⊗ . . . ⊗ eip ⊗ ek
div A = Ai1...ip−1k,k ei1 ⊗ . . . ⊗ eip−1

curl A = ekripAi1...ip,r ei1 ⊗ . . . ⊗ eip−1 ⊗ ek ,

(with invariant meaning independent of the choice of coordinate system and its basis, of
course). The range of all indices above is 1 to 3 and eijk represents a component of the
third-order alternating tensor.
The symbol ·i represents a contraction on i indices between two tensors. For any tensor

A, we define the tensor obtained by symmetrizing in the first two indices as A(s) and the
one obtained by antisymmetrizing in the first two indices from the left as A(a). We denote
the deviatoric part of a second-order tensor by the superscript dev.

Motivation for kinematics of the theory
In this section we provide some intuition on the defect kinematics we adopt for our
theory of branch point singularities. This is first done by explicitly constructing a con-
tinuously differentiable deformation of a non-simply connected domain whose second
derivative has a prescribed, constant jump across a planar surface in the body.
With reference to Fig. 5, we think of � occupying a simply connected d = 2 or 3-

dimensional domain of ambient Euclidean space. Here, it may be viewed either as a
right-cylinder (d = 3) or a cross-section perpendicular to its axis (d = 2). We choose
a rectangular Cartesian coordinate system with the z-axis as the axis of the cylinder;
ei, i = 1, 2, 3 are the unit vectors along the x, y, z directions, respectively. �c is a cylin-
drical subset of � with rectangular cross-section centered on the z-axis. The region

Fig. 5 Schematic of set up
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�h := �\�c is not simply-connected. S is a surface in �h such that D := �h\S is sim-
ply connected. The layer L is defined as L =

{
(x, y, z) ∈ �h | x < 0,− l

2 ≤ y ≤ l
2

}
and the

surface S = {(x, y, z) ∈ �h | x < 0, y = 0
}
. We will refer to �c as a core.

Our goal in this section is to construct a vector field ỹ(l) : �h → R
n, n ∈ N, n ≥ d,

0 < l ∈ R, with ỹ(l) ∈ C1(�h), ∇ ỹ(l) piecewise-smooth, and the jump in ∇2ỹ(l) across
S a specified constant, with the jump blowing up as l → 0 maintaining liml→0 ∇ ỹ(l) ∈
C0(�h).
A necessary condition for ỹ(l) ∈ C1(�h)with∇ ỹ(l) piecewise-smooth is that the jump in

its second derivative across S be of the form
�∇2ỹ(l)� = A⊗ ν, where ν is the unit normal

field on S (with arbitrarily chosen orientation) and A is a Rn×d valued matrix field on S.
Noting that l−1 �∇2ỹ(l)� may be formally considered an approximate discrete directional
derivative of ∇2ỹ(l) in the direction ν (if the discontinuity were ignored), we define the
field

Z :=
⎧
⎨

⎩

1
l A ⊗ ν ⊗ ν in L

0 in �h\L
(4)

with A and ν = e2 constants, and seek to construct solutions to the equations

∇W = Y
∇Y = Z|D

}

in D. (5)

The restriction of Z to D is used since, even though Z is (distributionally) curl-free in �h
(we interpret the curl of a matrix field as row-wise curls), �h is not simply connected but
D is and hence we are guaranteed a solution Y in D, unique up to a constant.
For any such Y field, we note that curl Y = 0 in D by the symmetry in the last two

entries of Z, i.e. (∇Yel)ek − (∇Yek)el = (Zel)ek − (Zek)el = 0. Thus W satisfying (5) can
be constructed, andW is also unique in D up to a constant for a given Y.
Arbitrarily fix one of the available Y fields. Such a Y has the explicit representation

Y (x; x0) = lim
x−
0 →x0

(

Y
(
x−
0
)+
∫ x

x−
0

Z dx
)

, x ∈ D,

for x0 being any point on the surface S, and the line integral is along any path from x−
0 to

x contained in D. Now choose any path going from x−
0 to x+

0 (see Fig. 5) contained in D
with the stipulation that it go through the points x0 ± l

2e2 and the segments between x0
and x0 ± l

2e2, respectively, are parallel to e2. We will assume that x±
0 = x0 ± s±e2. Then,

along the segment x(s) = x−
0 − (s − s−)e2, 0 < s− ≤ s ≤ l

2 ,

Y
(

x0 − l
2
e2
)

= Y (x−
0 ) +
∫ l

2

s−
A ⊗ ν

l
(e2 · −e2) ds = Y (x−

0 ) − A ⊗ ν

l

(
l
2

− s−
)

. (6)

Y (x(s)) remains constant along the path between x0 − l
2e2 and x0 + l

2e2. Therefore, using
the segment x(s) = x0 + l

2e2 − se2, 0 ≤ s ≤
(
l
2 − s+
)
we have

Y (x+
0 ) = Y

(
x0 + l

2e2
)

+ ∫ x
+
0

x0+ l
2 e2

Z dx

= Y
(
x0 − l

2e2
)

− A⊗ν
l

(
l
2 − s+
)

= Y (x−
0 ) − A⊗ν

l

(
l
2 − s−
)

− A⊗ν
l

(
l
2 − s+
)
.
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Hence, the jump in Y at x0 is given by

�Y �(x0) = lim
x±
0 →x0

Y (x+
0 ) − Y (x−

0 ) = −A ⊗ ν. (7)

Since x0 ∈ S and Y such that ∇Y = Z in D were chosen arbitrarily, (7) holds for all x0 ∈ S
and admissible Y in the specified class. Thus �Y � is unique in that class, independent of
position on S, and given by the constant −A ⊗ ν.
We note that Y ∗ : �h → R

n×d×d may be viewed as a discontinuous function with the
specification

Y ∗(x) =
⎧
⎨

⎩

lim
x−→ x

Y (x−) − 1
2A ⊗ ν, x ∈ S

Y (x), x ∈ D.

where the points x− ∈ D belong to the − side of S at x.
We now evaluate the jump in the fieldW on S.
As already observed, for any Y satisfying (5) aW field in D can also be constructed and

this will have the representation

W (x; y) = W (y) +
∫ x

y
Y dx, x, y ∈ D,

for any path linking y to x in D. We now arbitrarily fix an admissible field Y and choose
the same path from x−

0 to x+
0 used in deducing its jump on S.

Along x(s) = x−
0 − (s − s−)e2, s− ≤ s ≤ l

2 , Y (s) = Y (x−
0 ) − A⊗ν

l (s − s−) and

W
(
x0 − l

2e2
)

= W (x−
0 ) + ∫

l
2
s−
[−A⊗ν

l (s − s−)
]
(−e2) ds + Y (x−

0 )
∫ l

2
s−(−e2) ds

= W (x−
0 ) + ∫

l
2−s−
0

A⊗e2
l (e2)s′ ds′ −

(
l
2 − s−
)
Y (x−

0 )e2

= W (x−
0 ) + A

2l

(
l
2 − s−
)2 −
(
l
2 − s−
)
Y (x−

0 )e2.

(8)

Since Y remains constant at the value given by (6) along the chosen path from x0 − l
2e2 to

x0 + l
2e2,

W
(
x0 + l

2e2
)

= W
(
x0 − l

2e2
)

+ ∫ x0+
l
2 e2

x0− l
2 e2

Y dx

= W
(
x0 − l

2e2
)

+ l Y
(
x0 − l

2e2
)
e2

= W (x−
0 ) + A

2l

(
l
2 − s−
)2−
(
l
2 − s−
)
Y (x−

0 )e2 + l Y (x−
0 )e2 −

(
l
2 − s−
)
A.

(9)

using (6) and (8). Now

W (x+
0 ) = W

(

x0 + l
2
e2
)

+
∫ x+

0

x0+ l
2 e2

Y dx (10)

and Y (s) along the segment x(s) = x0 + l
2e2 − se2, 0 ≤ s ≤ l

2 − s+ is given by

Y (s) = Y
(

x0 + l
2
e2
)

+
∫ s

0
Z(s)(−e2) ds = Y

(

x0 + l
2
e2
)

− s
A ⊗ ν

l
,

so that
∫ x+

0
x0+ l

2 e2
Y dx = ∫

l
2−s+
0

[
Y
(
x0 + l

2e2
)

− sA⊗ν
l

]
(−e2) ds

=
[
−Y
(
x0 + l

2e2
)
e2
] (

l
2 − s+
)

+ A
2l

(
l
2 − s+
)2

,
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and therefore (9), (10), and (6), noting Y
(
x0 − l

2e2
)

= Y
(
x0 + l

2e2
)
, imply

W (x+
0 ) − W (x−

0 ) = A
2l

(
l
2 − s−
)2 −
(
l
2 − s−
)
Y (x−

0 )e2 + l Y (x−
0 )e2 −

(
l
2 − s−
)
A

+
[
−
{
Y (x−

0 ) − A⊗ν
l

(
l
2 − s−
)}

e2
] (

l
2 − s+
)

+ A
2l

(
l
2 − s+
)2

.

Thus,

�W�(x0) = lim
x±
0 → x0
s±→ 0

W (x+
0 )−W (x−

0 ) = A
2l

(
l
2

)2
− l
2
A+A

l

(
l
2

)2
+A
2l

(
l
2

)2
= 0. (11)

We now define the functionW ∗ : �h → R
n×d as

W ∗(x) =
⎧
⎨

⎩

lim
x−→ x

W (x−) = lim
x+→ x

W (x+), x± ∈ D, x ∈ S

W (x), x ∈ D,
(12)

where the points x± belong to the ± sides of S at x, respectively. W ∗ is a continuous
function on �h.
We now assume that the constant A is of the form A = a ⊗ ν for a ∈ R

n. Then, in D,
∇2W = Z = a⊗ν⊗ν⊗ν so that∇W = (ν·x)a⊗ν⊗ν+C whereC ∈ R

n×d×d is a constant.
This constant is free to choose, without loss of generality (related to the choice of Y (x−

0 ),
for instance), and we assume that it satisfies (Cei)ej = (Cej)ei for i, j = 1, . . . , d. Then
curlW = curlW ∗ = 0 in D. This further implies that the line integral

∫
W ∗ dx = b ∈ R

n

is a constant for any closed contour encircling �c.
If b = 0, then we define

W̃ = W ∗ in �h.

If not, we explicitly solve the system

curl Ŵ = −b ⊗ e3 δz−axis =: α̂ in �. (13)

Solutions exist to this system (e.g. an explicit solution on star-shaped domains can be
written down by using the Riemann-Graves integral operator (Edelen 1985)) that belong
to C1(�h). Forcing by the Dirac distribution is not necessary; functions of (x, y) with
support in a cylinder contained in �c satisfying

∫
A α̂ e3 da = −b for any area patch A

threaded by the cylinder also suffice for generating such solutions (Acharya 2001)). Then
defining

W̃ = Ŵ
∣
∣
�h

+ W ∗ in �h,

we note that
∫
W̃ dx = 0 for any closed contour encircling �c and that W̃ ∈ C0(�h).

Then we define ỹ : �h → R
n by

ỹ(x; z) = p +
∫ x

z
W̃ dx, x, z ∈ �h (14)

for arbitrarily fixed z ∈ �h and a constant p ∈ R
n.

Clearly, ỹ satisfies ∇ ỹ = W̃ on �h and ỹ ∈ C1(�h).
Consider the constant vector a ∈ R

n to be parametrized by the layer width l as

a(l) = γ lβ−1, γ ∈ R
n, 0 < β ∈ R.

All fields constructed with the use of A = a(l) ⊗ ν are denoted by a superscript (l). We
have the following properties:
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• For 0 ≤ β < 1, ỹ(l) ∈ C1(�h) for l > 0, liml→0
∣
∣∇2ỹ(l)∣∣→ ∞ in �h,

liml→0
∣
∣∇ ỹ(l)∣∣→ ∞ in �h\L.

• For β = 1, ỹ(l) ∈ C1(�h) for l > 0, liml→0 ỹ(l) ∈ C1(�h), liml→0 ∇2ỹ(l) ∈ C0(D) and
liml→0

�∇2ỹ(l)� is bounded on S. This conclusion also holds for any value of β ≥ 0
when l > 0 is held fixed.

• For l → 0, β > 1, ỹ(l) ∈ C2(�h).

Remark 0.1. While the above considerations have dealt with one singular surface, the
linearity of the construct on the prescribed field Z makes it clear that exactly similar argu-
ments hold for the superposition of a set of deformations, each element of which contains
a single planar surface of discontinuity of arbitrary orientation in �h terminating on �c.
Considering yi, i = 1 to n ∈ Z

+, each corresponding to a specified Zi field, the composite,
superposed deformation

∑n
i=1 yi is C1(�h), with generally discontinuous second deriva-

tives on each of the Si corresponding to the specified Zi field. This corresponds to situations
with a single branch point (Gemmer and Venkataramani 2011; Gemmer and Venkatara-
mani 2012; Gemmer and Venkataramani 2013) as exemplified by the piecewise quadratic
monkey-saddle that we discussed in “Branch points and lines of inflection” section.
Furthermore, given a fixed, simply connected domain�, let�i

c ⊂ �, i = 1 to n, be a set of
non-intersecting cores with �i

h := �\�i
c. Let each Zi now be specified on the domain �i

h. Then
each yi is C1(�i

h). Thus,
∑n

i=1 yi ∈ C1(∩n
i=1�

i
h
)
. This corresponds to configurations withmulti

ple branch-points (Gemmer et al. 2016; Shearman and Venkataramani, in preparation).
Remark 0.2. For thin objects modeled by d = 2, the construction above is a representation
of folds without ridges. In “Kinematics” section and “Thermodynamics” section we develop
a continuum mechanical theory that encompasses the mechanics of such folds in simply
connected domains within a setting that allows for deformations with less smoothness.
Remark 0.3. Consider d = 2, n = 2 and b �= 0, and assume that W ∗(x), x ∈ �h, is
invertible. A field y∗ : D → R

2 satisfying ∇y∗ = W ∗ in D can be constructed that may be
interpreted as a discontinuous deformation of �h. Now consider the metric g := W ∗TW ∗

on �h. By the Nash C1 embedding theorem, there exists a C1 deformation z : �h → R
3

with (∇z)T∇z = g = (∇y∗)T∇y∗.
For amechanistic interpretation, consider the configuration inR3 defined by z(�h) as the

stress-free, global reference configuration in a higher dimensional space (R3) corresponding
to a stressed body with a dislocation (with excluded core) in R

2 represented by �h. The
stress-free reference cannot be represented by a compatible mapping of �h in the lower-
dimensional space R2; instead, one of its stress-free representations in R

2 is defined by the
configuration y∗(�h). The stress-producing elastic Right-Cauchy Green tensor field is given
by (W ∗−1)TW ∗−1 on �h.

The discontinuity of the deformation of a non simply connected domain with prescribed

third ‘deformation gradient’

Consider the domain �h of Fig. 5 which is rendered simply connected by a single cut-
surface S which is not necessarily planar. As before, we refer to �h\S =: D. We consider
Z : �h → R

n×d×d×d as a given field for which ((Z(x)el)ek)ej is invariant w.r.t interchanges
of ej, ek , el for any values of j, k, l ∈ {1, . . . , d}. Furthermore, we assume that Z ∈ C0(�h),
and curl Z = 0 in �h. We are now interested in the construction of a field y : D → R

n

that satisfies
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∇3y = Z

and characterizing the jump field �y� on S.
Define, for x ∈ �h, [ ((Z(x)el)ek)ej] ·EI =: ZIjkl(x), I = 1, . . . , n and j, k, l = 1, . . . , d,

where EI represents an element of an orthonormal basis in R
n. ZIjkl is symmetric in the

indices j, k, l. Now construct Y : D → R
n×d×d satisfying

∂YIjk
∂xl

= ZIjkl, (15)

which is possible since curlZ = 0 and D being simply connected. We note that YIjk(x) −
YIkj(x) = YIjk(y)−YIkj(y) for x, y ∈ D, due to the symmetry of ZIjkl in j, k and the connect-
edness of D. Since the construction of Y allows the free specification of its value at one
point of D, it can be assumed without loss of generality that YIjk = YIkj in D.
Eq. 15 and the symmetry of Z in the last two indices imply curl Y = 0 in D. Thus it is

also possible to constructW : D → R
n×d satisfying

∂WIj

∂xk
= YIjk . (16)

Furthermore, (16) and the symmetry of Y in its last two indices imply that a function
y : D → R

n can be constructed satisfying
∂yI
∂xj

= WIj. (17)

Now, because Z is curl-free in �h, we have by Stokes’ theorem that
∫
Z dx=:� ∈ R

n×d×d a constant, for the line integral over any closed loop encircling�c.

(18)

By (15) and (16), this further implies that

� = �Y �(x) = �∇W�(x), x ∈ S. (19)

Let x0, x ∈ S be connected by a curve c contained in S. Consider curves c+ and c− on the
± sides of S connecting x±

0 to x±. Then

W (x±) = W (x±
0 ) +
∫ x±

x±
0

∇W (c±) dc± =⇒ �W�(x) = �W�(x0) + �(x − x0) (20)

as c± → c. Similarly, (17) implies

y(x±) = y(x±
0 ) + ∫ x±

x±
0

∇y(c±) dc±

=⇒ �y�(x) = �y�(x0) + ∫ xx0�W�(c) dc = �y�(x0) + ∫ xx0
{
�W�(x0) + �(c − x0)

}
dc

= �y�(x0) +
(
�W�(x0)

)
(x − x0) + ∫ x−x0

0 �c′ dc′

(21)

Now, due to the symmetry of � in its last two indices, �Ijkc′k
dc′j
ds = 1

2
d
ds (�Ijkc′kc

′
j) and the

last line integral in (21) evaluates to 1
2 (�(x − x0)) (x − x0) so that (21) implies

�y�(x) = �y�(x0)+
(
�W�(x0)

)
·1(x−x0)+ 1

2
� ·2[(x − x0) ⊗ (x − x0)] , ∀x, x0 ∈ S.

(22)

Remark 0.4. The jump in the deformation y across the cut-surface S is not arbitrary, being
characterized by a finite set of parameters. One choice for this parameter set is the jump of
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the deformation at an arbitrarily fixed point on S, the jump of W at the same point, and �,
the latter being a constant decided by the given field Z.
Remark 0.5. �W� is not constant on S even though curl Y = 0 in D unless the vector
joining any two points on S lies in the null-space of � by (20). For S a planar surface with
unit normal ν and � of the form a⊗ν⊗ν, a ∈ R

n, ν ∈ R
d constants, (20) implies that �W�

is constant on S. If, moreover �W�−(�W�ν)⊗ν = 0, then �y� is also a constant on S. These
are all conditions satisfied by the example worked out in the preamble of this section.
Remark 0.6. The argument remains unchanged for the case �h is just a punctured
domain, i.e. �c shrinks to a point (a curve).
Remark 0.7. The result (22) is an extension of Weingarten’s theorem (Weingarten 1901;
Delphenich a; Volterra 1907; Delphenich b) and theWeingarten theorem for g.disclinations
(Zhang and Acharya 2018).

Kinematics
In this section we propose the kinematics for a model of the type of discontinuities treated
in “Motivation for kinematics of the theory” section, to be broadly applied to the mechan-
ics of materials. For that purpose, it is essential to deal with simply connected, compact
domains containing the said discontinuities. The excluded core regions are now included
in the domain as are the excluded surfaces of discontinuity. Roughly speaking, we con-
sider an additive split of fields into ‘regular’ and ‘singular’ parts whenever the field in
question contains high magnitudes concentrated in ‘thin’ regions approximating smooth
lower-dimensional (< d) sets; the support of the singular part of the field contains these
regions of high concentration and that of the regular part contains the support of the
rest of the field, including regions supporting approximate discontinuities. Importantly,
both the singular and regular parts are assumed to be at least integrable functions as we
want to write governing equations for these fields in the form of pde that can at least be
made sense of in some weak manner. Thus, we take a somewhat microscopic point of
view, assuming that discontinuities and singularities of certain fields when viewed from a
macroscopic scale have a smoother definition at a microscopic scale that we describe by
additional ‘eigenwall’ fields. We also adopt the point of view that once macroscopic theo-
ries generate discontinuities and singularities, in most circumstances additional physical
insight beyond the constraints placed by the governing equations of the macroscopic the-
ory are required to define evolution with a modicum of uniqueness. We develop such a
model in the rest of the paper.
We refer to a fixed reference configuration, a simply connected compact region as B. In

terms of the displacement field u and the i-eigenwall fields S(i), i ∈ {1, 2, 3}, we define the
i-elastic distortions Y (i), i ∈ {0, . . . , 4}, as

Y (4) := ∇Y (3)

Y (i) := ∇Y (i−1) − S(i) i ∈ {1, 2, 3}
Y (0) := u.

(23)

(Y (0) is analogous to the field y of “Motivation for kinematics of the theory” section, Y (1)

toW, Y (2) to Y, and Y (3) to Z). Thus Y (0) = u and Y (4), the gradient of the regular part of
the gradient of the 3-elastic distortion, are assumed to have no ‘singular’ parts. We now
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define the ‘composite’ eigenwall fields Ŝ(i), i = 1, 2, 3, as

Y (3) = ∇Y (2) − S(3) = ∇3u − Ŝ(3); Ŝ(3) := ∇2S(1) + ∇S(2) + S(3)

Y (2) = ∇Y (1) − S(2) = ∇2u − Ŝ(2); Ŝ(2) := ∇S(1) + S(2)

Y (1) = ∇Y (0) − S(1) = ∇u − Ŝ(1); Ŝ(1) := S(1),

(24)

and we note that

S(i) = Ŝ(i) − ∇Ŝ(i−1) i ∈ {1, 2, 3}. (25)

Remark 0.8. While motivated as non-singular fields representing concentrations along 2-
d surfaces, the (composite) eigenwall fields admit a completely diffuse description, when
necessary, in the theory developed below. In this sense the theory developed in this paper
is capable of dealing with some simple aspects of ‘homogenization’ of eigenwall fields to
descriptions at a coarser scale.
Physical considerations related to predicting stress fields of terminating twin bound-

aries and the stress-free, compatible, elastic, twinning shear distortions of through-twin
boundaries (Zhang et al. 2018) motivate the introduction of the following Stokes-
Helmholtz (SH) decompositions:

S(i) = ∇H(i) − χ(i)

curl χ(i) = −curl S(i)

divχ(i) = 0
div∇H(i) = div S(i)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

x ∈ B, i ∈ {1, 2, 3},

χ(i)n = 0
∇H(i)n = S(i)n

}

x ∈ ∂B, i ∈ {1, 2, 3}.

(26)

We will also consider exactly analogous SH decompositions for the fields

Ŝ(i) = ∇Ĥ(i) − χ̂ (i), i ∈ {1, 2, 3}. (27)

Combining (25) and (27) and noting the uniqueness of the SH decomposition we have

H(i) = Ĥ(i) − Ŝ(i−1), i ∈ {1, 2, 3}, (28)

up to at most a spatially constant function of time which we will assume to be a time-
independent constant. Defining

Ŷ (i) := Y (i) − H(i+1), i ∈ {1, 2, 3} (29)

(noting thatH(4) = 0), we define the i-defect density tensors for i ∈ {1, 2, 3} from (23) and
(29) as

α(i) := −Y (i+1) ·2 X = curl Y (i) + S(i+1) ·2 X = curl Ŷ (i) − χ(i+1) ·2 X
α̂(i) := α(i) − S(i+1) ·2 X = curl Y (i) = −curl S(i) = −curl Ŝ(i) (30)

using (25) and S(4) = χ(4) = 0.
Since α̂(i) are defined locally as a curl, the local forms of the conservation laws for

topological charge content,
∫
�

α̂(i)n da, of an arbitrary area patch � is given by
˙̂

α(i) = −curl
(
α̂(i) × V ‖(i)) , i ∈ {1, 2, 3} (31)

where V ‖(i), for each i, is a vector field. V ‖(i) is the velocity field of the i-defect density
field. Combining (30) and (31), we have that

curl
( ˙S(i) − α̂(i) × V ‖(i)) = 0 ⇐⇒ ˙S(i) =

(
−curl S(i)

)
×V ‖(i)+∇F(i), i ∈ {1, 2, 3}

(32)



Acharya and VenkataramaniMaterials Theory             (2020) 4:2 Page 16 of 29

for some F(i) that can be prescribed. Eqs. 24 and (32) imply

˙̂S(i) =
(
−curl S(i)

)
× V ‖(i) + ∇F(i) +

i−1∑

k=1
∇ i−k ˙S(k), i ∈ {1, 2, 3} (33)

with the last sum vanishing for i = 1.
By kinematical arguments related to allowing for transverse motion of walls charac-

terized by localized S(i) fields on surfaces, a part of F(i) is of the form F(i) = S(i)V⊥(i),
where V⊥(i) is the velocity of the i-eigenwall field. Guided by simplicity in thermody-
namic arguments that precludes the appearance of (unremovable) gradients of dislo-
cation and eigenwall velocity fields in the expression for dissipation of the body (see
“Thermodynamics” section), we make the following choice

∇F(i) := ∇
(
S(i)V⊥(i)

)
−

i−1∑

k=1
∇ i−k ˙S(k), i ∈ {1, 2, 3}. (34)

In (32) and (33), incorporating (34), V ‖(i) and V⊥(i) are to be constitutively specified,
minimally consistent with the second law of thermodynamics to be globally satisfied for
all processes of any body modeled by this theory.
Surfaces of displacement discontinuity (e.g. stacking faults) are not known to move

transverse to themselves; moreover, such discontinuities are often not identifiable based
on knowledge of only the current state (and not of the distinguished coherent reference
fromwhich displacements are measured). Hence, we will assumeV⊥(1) ≡ 0. Elastic phase
boundaries, i.e. localizations of the S(1) field along surfaces are known to move transverse
to themselves, and not much is known about transverse motions of surfaces of disconti-
nuity of the second gradient of elastic distortion, i.e. surfaces of inflection. Thus, we allow
V⊥(i), i = 2, 3 to be nonvanishing fields in general. Hence, we have the following evolution
equations for the eigenwall fields:

˙S(1) = (−curl S(1))× V ‖(1) = (−curl Ŝ(1))× V ‖(1) = ˙Ŝ(1)

˙S(2) + ∇ ˙S(1) = (−curl S(2))× V ‖(2) + ∇ (S(2)V⊥(2))

= (−curl Ŝ(2))× V ‖(2) + ∇ ((Ŝ(2) − ∇Ŝ(1))V⊥(2)) = ˙Ŝ(2)

˙S(3) + ∇2 ˙S(1) + ∇ ˙S(2) = (−curl S(3))× V ‖(3) + ∇ (S(3)V⊥(3))

= (−curl Ŝ(3))× V ‖(3) + ∇ ((Ŝ(3) − ∇Ŝ(2))V⊥(3)) = ˙Ŝ(3)

(35)

Thermodynamics
We assume a free-energy density function of the body with the following dependencies:

ψ = ψ∗ (Ŷ (1), Ŷ (2), Ŷ (3), Ŝ(1), Ŝ(2), Ŝ(3), α̂(1), α̂(2), α̂(3),χ(2),χ(3))

= ψ∗∗ (Y (1),Y (2),Y (3),H(2),H(3), Ŝ(1), Ŝ(2), Ŝ(3), α̂(1), α̂(2), α̂(3),χ(2),χ(3))

= ψ
(∇u,∇2u,∇3u, Ĥ(2), Ĥ(3), Ŝ(1), Ŝ(2), Ŝ(3), α̂(1), α̂(2), α̂(3),χ(2),χ(3)) ,

(36)

using (29), (24), (28), and noting that H(4) = 0 (where the argument fields of each of
the functions are evaluated at (x, t) to give the value of ψ(x, t)). Roughly speaking, the
dependencies ofψ∗ on Ŷ (i), α̂(i), i = 1, 2, 3 are expected to be convex and those on Ŝ(i), i =
1, 2, 3 to be multi-well, nonconvex.
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The balances of linear and angular momentum are given by

ρv̇ = div T + bf = ρü
0 = div� − X ·2 T + K

(37)

where ρ is the mass density, v is the material velocity vector, T is the stress, � is the
couple stress, and bf ,K are the body force and body-couple densities per unit volume,
respectively. As usual in solid mechanics, we assume balance of mass is satisfied once
the deformation map at any instant is determined by evaluating the density field on the
deforming body from the formula ρ = ρ0

det(I+∇u)
, where ρ0 is the density field on the

reference configuration.
The mechanical power supplied to the body is defined as (Mindlin and Tiersten 1962)

P := ∫B b − f ·1 v dv + ∫
∂B(Tn) ·1 v da + ∫

∂B(�n) ·1 ω da + ∫B K ·1 ω dv
= ∫B ρv ·1 v dv + ∫B [T ·2 D + � ·2 M] dv,

using the balances of linear and angular momentum, where n is the outward unit normal
to the boundary of the body, ω := 1

2 curlv = − 1
2X ·2 � is the rotation vector where

� := 1
2
(∇v − (∇v)T

)
is the rotation-rate tensor, D := 1

2
(∇v + (∇v)T

)
is the strain-rate

tensor, andM := ∇ω. Denoting

F =
∫

B
ψ dv; K =

∫

B

1
2
ρv ·1 v dv

the mechanical dissipation, D, or the difference between the power supplied to the body
and that stored in it, is given by

D := P − ˙K + F =
∫

B

(
T ·2 D + � ·2 M − ψ̇

)
dv. (38)

In the following, we deduce guidelines for constitutive specification in our model that
ensure that the mechanical dissipation vanishes in the absence of eigenwall and defect
field evolution in any process and is positive otherwise, a minimal necessary condition for
the mathematical model to be well-posed.
To facilitate the derivation of the thermodynamic driving forces for the various defect

density and eigenwall fields, we will need the following auxiliary fields P(i), i ∈ {2, 3}
defined by the solutions of the following Poisson equations:

div∇P(i) = ∂Ĥ(i)ψ x ∈ B
∇P(i) n = 0 x ∈ ∂B

}

i ∈ {2, 3}, (39)

which requires that the free-energy density function should satisfy the constraint
∫

B
∂Ĥ(i)ψ dv = 0, i ∈ {2, 3}.

(This is formally easily arranged by taking any arbitrary ψ̃ with the dependencies of (36)3,
and defining ψ = ψ̃ −∑3

i=2

(
|�|−1 ∫

�
∂Ĥ(i) ψ̃ dv

)
·i Ĥ(i), but its physical and rigorous

mathematical implications need to be understood).
Defining R(i) := ∂χ(i)ψ , the fieldsWR(i) satisfying

curl curlWR(i) = −div∇ WR(i) = curl R(i) x ∈ B
divWR(i) = 0 x ∈ B
WR(i) × n = 0 x ∈ ∂B

⎫
⎪⎬

⎪⎭
i ∈ {2, 3} (40)

(that exist by a unique Stokes-Helmholtz resolution of R(i)), will aso be required in the
sequel for deriving the thermodynamic driving forces.
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A long computation involving (36)3 and the kinematics of the model defined in
“Kinematics” section reveals that the mechanical dissipation may be expressed in the
suggestive form

D =
∫

B

[
T − ∂∇uψ + div ∂∇2uψ − div div ∂∇3uψ

](s) ·2 Ddv (41)

+
∫

B

[

−1
2
X ·1 �dev − ∂∇2uψ + div ∂∇3uψ

](a)
·3 ∇� dv (42)

+
∫

∂B

[−∂∇2uψ n + (div ∂∇3uψ) n
](s) ·2 Dda +

∫

∂B

[−∂∇3uψ n
] ·3 ∇2v da

(43)

+
∫

B

3∑

i=1

[
X
((−∂̂S(i)ψ + curl ∂α̂(i)ψ

)T ·i α̂(i)
)]

·1 V ‖(i) dv (44)

+
∫

B

3∑

i=1

[(
div ∂̂S(i)ψ

) ·i Ŝ(i)
]

·1 V⊥(i) dv (45)

+
∫

∂B

3∑

i=1

[
X
((

∂α̂(i)ψ × n
)T ·i α̂(i)

)]
·1 V ‖(i) da (46)

+
∫

∂B

3∑

i=1

[
− (∂̂S(i)ψ n

) ·i Ŝ(i)
]

·1 V⊥(i) da (47)

+
∫

B

3∑

i=2

[

X
((

∇P(i)
)T ·i α̂(i)

)]

·1 V ‖(i) dv (48)

+
∫

B

3∑

i=2

[(−∂Ĥ(i)ψ
) ·i S(i)
]

·1 V⊥(i) dv (49)

+
∫

B

3∑

i=2

[

X
((

curlWR(i)

)T
·i α̂(i)
)]

·1 V ‖(i) dv. (50)

Thus, a set of constitutive equations, driving forces for dissipative mechanisms (denoted
below by the symbol�), and some boundary conditions for the model are

T (s) = [∂∇uψ − div ∂∇2uψ + div div ∂∇3uψ
](s) (51)

�dev = −X ·2
[
∂∇2uψ − div ∂∇3uψ

](a) (52)

[−∂∇2uψ n + (div ∂∇3uψ) n
](s)
∣
∣
∣
∂B

= 0 (53)

(
∂∇3uψ
)
n
∣
∣
∂B = 0 (54)

V ‖(i) � X
((−∂̂S(i)ψ + curl ∂α̂(i)ψ

)T ·i α̂(i)
)

V⊥(i) �
(
div ∂̂S(i)ψ

) ·i Ŝ(i)

}

, i = 1

V ‖(i) � X
((−∂̂S(i)ψ + curl ∂α̂(i)ψ + ∇P(i) + curlWR(i)

)T ·i α̂(i)
)

V⊥(i) �
(
div ∂̂S(i)ψ − ∂Ĥ(i)ψ

) ·i Ŝ(i)

}

, i = 2, 3

(55)
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V ‖(i)∣∣
∂B � X

((
∂α̂(i)ψ × n

)T ·i α̂(i)
)

V⊥(i)∣∣
∂B � − (∂̂S(i)ψ n

) ·i Ŝ(i)

}

, i = 1, 2, 3 (56)

(it can be checked that the rhs of (52) is deviatoric). Eqs. 51-(54) along with the con-
stitutive choices for the defect and eigenwall velocities to be in the direction of their
respective driving forces, mediated by a positive, mobility/drag scalar required on dimen-
sional grounds, ensures non-negative dissipation. Of course, other choices consistent with
positive dissipation are possible as well. The boundary conditions (53)-(54) are not the
most general, but a compromise between including higher order stress tensors with dubi-
ous physical meaning beyond couple stresses and simplicity in an already involved higher
order theory of defects.
It is clear from (51)-(52) and (37) that the governing equations lead to sixth-order pde

in the displacement field u (see “Example: a model of branch-point defects in an elastic
body” section below).
Remark 0.9. A minimal set of field variables to be evolved in the model are (u, Ŝ(i), i =
1, 2, 3) governed by (37) and (35), with Ĥ(1), Ĥ(2) determined from (27), WR(i) , i = 2, 3
determined from (40), and α̂(i), i = 1, 2, 3 determined from (30).
Remark 0.10. The composite eigenwall fields are coupled to each other through (35) and
through the displacement field, appearing in the driving forces for the defect and eigen-
wall velocity fields, governed by (37). The results of “Motivation for kinematics of the
theory” section shows how the presence of a higher order defect (characterized by � �= 0 in
a non-simply connected domain) induces a lower order defect (�y� �= 0) that, in general,
induces stress in the body (Remark 0.3).
Remark 0.11. A theory of only surfaces of inflection and singularities arises by assuming
Ŝ(1) = 0 and Ŝ(2) = 0. A theory of only dislocations arises by setting Ŝ(3) = 0 and Ŝ(2) = 0
along with V⊥(2) = 0. A theory of only g.disclinations arises by setting Ŝ(1) = 0 and Ŝ(3) = 0
along with V⊥(3) = 0. Pair-wise coupled defect theories (dislocations + g.disclinations,
dislocations + branch/inflection defects, g.disclinations + branch/inflection defects) can
be obtained by similar means.

Example: a model of branch-point defects in an elastic body
We assume the as-received body as the reference configuration with all displacements
measured from it; in particular, we assume that u(x, 0) = 0. We specialize the general
formalism to a specific case by making the simplest possible choice for the free energy
density (36) that shows the generalization of incompatible elasticity achieved by our work:

ψ = 1
2

(
∇u − Ŝ(1)

)
C
(
∇u − Ŝ(1)

)
+ 1

2
c2
∣
∣
∣∇2u − Ŝ(2)

∣
∣
∣
2

+ 1
2
c3
∣
∣∇3u − S

∣
∣2 + d3f

(
l2|S|)+ 1

2
ε3 |curlS|2 ,

(57)

with the ansatz that V⊥(i) = 0, i = 1, 2, 3 and V ‖(1) = V ‖(2) = 0, assumptions
that are consistent with non-negative dissipation. Under these conditions Ŝ(i), i = 1, 2
do not evolve and remain fixed at their values specified through initial conditions. Let
Ŝ(1)(x, t) = Ŝ(1)(x, 0) = g̃(x) and Ŝ(2)(x, t) = Ŝ(2)(x, 0) = b̃(x), and we note that g̃sym
and b̃ are the analogs, for a 3-d body, of the freely specified, non-evolving, g and b ten-
sors of incompatible elasticity described in “Statics and equilibria of non-Euclidean elastic
sheets” section; we note that with g̃ specified, Ŝ(2)(x, 0) can be arbitrarily specified bymak-
ing a suitable choice of the field S(2)(x, 0). We then have Ŝ(3) = S(3) + ∇Ŝ(2) =: S. Here, C
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is the 4th-order tensor of elastic moduli with major and minor symmetries, c2, c3 are non-
negative scalars (in place of sixth and eighth order tensors!), d3 is a positive scalar (that
could also be a positive scalar-valued function of |curlS|), and l, ε3 are positive scalars. The
physical dimensions of c2, c3, d3, l, ε3 are stress.(length)2, stress.(length)4, stress, length, and
stress.(length)6, respectively. Since the equilibria we envisage are of nominally elastic bod-
ies that show non-trivial shapes under no applied loads, f is generally expected to be a
multi-well nonconvex function with the bottom of one well at the argument 0.
Thus we are looking for the mechanics of surfaces of inflection and branch line defects

in bodies with an evolving stress-free reference characterized by the choices Ŝ(1)
sym = g̃sym,

Ŝ(2) = b̃, Ŝ(3) = S. It is interesting to note that even when g̃ = 0 and b̃ = 0,
the energy/stress-free reference for our body is never immersible in three-dimensional
Euclidean space whenever S �= 0, i.e. the stress-free state is necessarily incompatible or
non-realizable, since it is impossible to construct a displacement field of a 3-d body with
vanishing strain, i.e., (∇u)(s) = 0, whose third gradient is non-vanishing.
The balances of linear and angular momentum (37) are solved by taking a curl of (37)2

to obtain

div T (a) = 1
2
curl
(
div�dev

)
+ 1

2
curl K ,

that on substitution in (37)1 leads to

ρü = div T (s) + 1
2
curl
(
div�dev

)
+ 1

2
curl K + bf . (58)

Constitutive Eqs. 51-(52) are used to solve for a displacement field from (58) (when the
defect fields are assumed given), thus satisfying (37)1, and (37)2 is then satisfied, in terms
of this displacement field, by simply evaluating Ta from the equation

X ·2 T (a) − 1
3
∇(tr�) = div λdev + K , (59)

making the assumption that the constitutively undetermined tr� = 0, without loss of
generality.
For the constitutive choice (57)

�dev = −c2 X ·2
(
∇2u − b̃

)(a) + c3 X ·2
(
div(∇3u)

)(a) − X ·2 (div S)(a);

�dev
il = eijk

(
−c2(u[j,k]l − b̃[jk]l) + c3 u[j,k]lmm − c3 S[jk]lm,m

)
;

1
2

(
curl
(
div�dev

))

i
= −c2(u[i,m]llm − b̃[im]l,ml) + c3 u[i,m]llppm − c3 S[im]lp,plm

(60)

and

T (s) = C(∇u − g̃) − c2
(
div
(
∇2u − b̃

))(s) + c3
(
div div∇3u

)(s) − c3 (div div S)(s) ;

T (s)
im = Cimkl(uk,l − g̃kl) − c2(u(i,m)ll − b̃(im)l,l) + c3 u(i,m)lppl − c3 S(im)lp,pl;

(
div T (s)

)

i
= Cimkl

(
uk,lm − g̃kl,m

)−c2
(
u(i,m)llm − b̃(im)l,lm

)
+ c3 u(i,m)lpplm − c3 S(im)lp,plm

(61)

so that the governing equation for the displacement field (58) may be written as

ρü=c3 �3u−c2 �2u+div (C∇u)−div C g̃+c2 div div b̃−c3 div div div S+1
2
curl K+bf ,

(62)
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where �3 (�3(·) = (·),iijjkk) and �2 (�2(·) = (·),iijj) are the triharmonic and the
biharmonic operators, respectively.
To develop the evolution equation for the field S we assume V⊥(3) = 0 for simplicity.

Since ψ in (57) does not depend on H(3) and χ(3), we have P(3) = 0 and WR(3) = 0 in
(55)3. The governing equation for the evolution of S therefore is given by

Ṡ = 1
B
curl S×

(

X
((

c3 (∇3u − S) − d3 l2f ′(l2|S|) S|S| −ε3 curl curl S
)T

·3 curl S
))

,

(63)

where B is a drag coefficient with physical dimensions of stress.(length)−2.time.
A detail needs to be attended to in the above considerations. The thermodynamic

relation (52) requires that
(
X ·2
[
∂∇2uψ − div ∂∇3uψ

](a))dev = 0. (64)

For the constitutive choice (57), (64) is equivalent to

−c2 eljk Ŝ(2)
[jk]l + c3 eljkS[jk]lm,m = 0.

Since the evolution Eq. 63 for S is of the form Ṡ = −curl S × V for a vector field V, it is
true that X ·3 Ṡ(a) = −curl

(
X ·3 S(a))× V and hence X ·3 S(a)(x, t) = 0 is consistent with

the evolution for initial data X ·3 S(a)(x, 0) = 0 and we adopt this solution. Furthermore,
we assume X ·3 b̃(a) = 0 by specification so that X ·3 Ŝ(2)(a)(x, t) = 0 and therefore (64) is
satisfied.
Remark 0.12. Spatial derivatives of the 3-eigenwall field serve as a source term in (62); for
instance, if S(x) = g(ν · x) b ⊗ ν ⊗ ν ⊗ ν, where ν is the unit normal to a planar surface,
g is a scalar-valued function of the spatial coordinate along ν given by ζ = ν · x (say a
Gaussian centered at ζ = 0), and b is a constant vector, this forcing is of the form d3g

dζ 3
b.

Eq. 63 implies that there is no evolution of the eigenwall field at locations where curl S =
0, regardless of the energetic driving force there. For example, the field S(x) = g(ν · x) b ⊗
ν ⊗ ν ⊗ ν has no ‘longitudinal’ variation and does not evolve according to (63). However,
S(x) = g(t · x)g(ν · x) b ⊗ ν ⊗ ν ⊗ ν, where t is orthogonal to ν does evolve. Physically, the
eigenwall field is ‘dragged’ by the evolution of its core.
Remark 0.13. The as-received body (where u = 0) need not be in equilibrium for generally
specified eigenwall initial data

(
g̃, b̃, S(·, 0)

)
for which the initial acceleration field can

be evaluated. The class of initial data that leads to a self-equilibrated, generally stressed
reference configuration may be obtained by writing g̃ := ∇z+ g∗, and solving for the vector
field z from (62) (and boundary conditions) with ρ := 0 for each choice of

(
g∗, b̃, S(·, 0)

)
.

Remark 0.14. The model with the ansatz Ŝ(1) = 0, Ŝ(2) = 0, is worthy of study on its own
merits.
Remark 0.15. Configurations rendering local minima of a body with the energy density
(57) may be studied by an (L2) gradient flow dynamics in the fields

(
u, Ŝ(i); i = 1, 2, 3

)

starting from arbitrarily specified initial states for these variables.
Remark 0.16. The governing Eq. 62 implies that, when the elastic modulus C is homo-
geneous and isotropic, given by Cijkl = λuk,kδij + μ(δikδjl + δilδjk), plane waves of curl u
and div u are dispersive in nature, with propagation possible in any direction in space. The
dilatational waves (i.e., waves of div u) with wave number |k| and direction k

|k| propagate
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with velocity

cd := ±
√
c3|k|4 + c2|k|2 + (λ + 2μ)

ρ

while the equivoluminal waves or ‘shear waves’ (i.e., vectorial waves of curl u) propagate
with velocity

cs := ±
√
c3|k|4 + c2|k|2 + μ

ρ
.

Continuous dependence w.r.t initial data of the Cauchy problem for the evolution of dis-
placement requires c3 ≥ 0. When c3 = 0, c2 must be non-negative, with the requirement
that μ ≥ 0 and λ + 2μ ≥ 0 if c2 = 0. Within these parameter regimes, linear instabilities
can arise for wavenumber and parameter combinations resulting in cd or cs taking complex
values.

Uniqueness of the displacement field and boundary conditions

Our model encompasses a model of third-order elasticity in the absence of dissipative
defect evolution, and involves the thermodynamically motivated higher-order boundary
conditions (53)-(54). Here, we use a uniqueness argument (in a putative smooth class
of solutions) to deduce a full set of boundary conditions for the problem (62) when the
S field is assumed specified. We abstract the results of the exercise in this special case
related to the ‘quadratic’ energy (57) to identify a likely set of sufficiently general boundary
conditions for the determination of the displacement field for processes consistent with
the general constitutive statement (36).
Consider two solutions u(1) and u(2) of (62) corresponding to identical S,K , bf , g̃, b̃

fields. Denote the difference displacement as u := u(1) − u(2) and its velocity v = u̇. Then
u satisfies

ρü = c3 �3u − c2 �2u + div (C∇u),

and taking the inner-product of the difference velocity with the equation and integrating
in space, we have

1
2
d
dt

∫

B
ρ vivi dv =

∫

B
Cimkl uk,lmvi dv −

∫

B
c2ui,mmll vi dv +

∫

B
c3ui,mmllpp vi dv,

which implies

1
2
d
dt

∫

B
ρ vivi dv +

∫

B
Cimkl uk,lvi,m dv +

∫

B
c2ui,ml viml dv +

∫

B
c3ui,mlp vi,mlp dv

=
∫

∂B

(
Cilkm uk,m − c2 ui,mml + c3 ui,mmppl

)
vi nl da

+
∫

∂B

(
c2 ui,lm − c3ui,lppm

)
vi,l nm da

+
∫

∂B

(
c3 ui,plm

)
vi,lp nm da. (65)

Let us now assume that both u(1) and u(2) satisfy (53)-(54) consistent with (57). Then the
last line of (65) vanishes due to the boundary condition (54) and the line before that due
to (53).
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Let the stress field arising from (u(i), S), i = 1 2, be T (i) = T (s)(i)+T (a)(i), in accord with
(59), (60), and (61). Then the third line from the bottom of (65) may be interpreted as
∫

B

(
T (1)
il − T (2)

il

)
vi nl da

and if we now additionally require that solutions satisfy specified tractions and velocities
(or displacements) on mutually complementary parts of the boundary of the body for all
times, then this term vanishes.
Consequently, we are left with

d
dt

(
1
2

∫

B
ρ vivi dv + 1

2

∫

B
Cimkl uk,lui,m dv

+1
2

∫

B
c2ui,ml uiml dv + 1

2

∫

B
c3ui,mlp ui,mlp dv

)

= 0

and if u(1) and u(2) both satisfy specified initial conditions on the displacement and veloc-
ity fields, then the bracketed quantity, an integral of sums of squares (in fact, the potential
and kinetic energies of the body subjected to the difference displacement) vanishes at all
times. This proves that the difference velocity vanishes point-wise, and the initial con-
dition on the difference displacement implies that u(1) = u(2) for all (x, t). Obviously,
the dynamic problem allows the prediction of unique rigid motions. In statics, i.e., when
the inertia term is absent, one takes the inner product of the governing equation for
the difference displacement with the difference displacement, and obtains, for the same
boundary conditions (except only the displacement can now be specified on the part of
the boundary complementary to where tractions are specified),
∫

B
Cimkl uk,lui,m dv +

∫

B
c2ui,ml uiml dv +

∫

B
c3ui,mlp ui,mlp dv = 0.

All integrands are non-negative implying that the strain, or the symmetrized displace-
ment gradient, vanishes (recall the minor symmetries of C) which, by compatibility,
further implies that the displacement field is unique if a displacement boundary condition
is specified and otherwise it is unique up to an infinitesimally rigid deformation.
Thus, the higher order boundary conditions (53)-(54), along with classical displace-

ment and traction boundary conditions may be expected to define a well-set problem
(for the displacement field) in the case of the general constitutive Eq. 36. Of course, the
traction now involves a stress tensor that has an antisymmetric part, and is constitutively
dependent on higher order displacement gradients.

A ‘plate’ idealization

For simplicity we consider g̃ = 0 and b̃ = 0. Let the reference B be a plate of thickness
2t, i.e., B = {(x1, x2, x3)|(x1, x2, 0) ∈ B2, x3 ∈[−t,+t] }, where B2 is a flat 2-dimensional
simply connected domain. Defining the through-the-thickness average of a function as

f (x1, x2) := 1
2t

∫ +t

−t
f (x1, x2, x3) dx3

and the notation
[
f
]+t
−t (x1, x2) := f (x1, x2,+t) − f (x1, x2,−t),

we now seek the governing equations for u and S, under the ansatz that S = S and ρ = ρ,
i.e., S and ρ do not vary through the thickness of the plate, and K = b = 0. It is also
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assumed that a component of S vanishes if any of its last three indices takes the value 3.
We use the notation that all lowercase Greek indices vary from 1 to 2 while lowercase
Latin indices span from 1 to 3.
While not essential, the assumptions l = 2t, c2 = Et2 and c3 = Et4, where E is the

Young’s modulus of the material can be made to draw an analogy with classical plate
theory (the curvature-related elastic energy term in the thickness-integrated expression
of (57) would then be proportional to t3). For 0 < t � 1, whenever S �= 0, there is
energy and stress in the body, possibly small, with the corresponding thickness-integrated
‘elastic’ energy of the plate (arising from the first three terms in (57)), alternatively the
‘plate elastic energy’, scales as ∼ t5, assuming energy is minimized, there are no external
forcing or constraints, and ε3 > 0 to rule out any possibility of a singular energy. Our
governing Eqs. 62 or (66) do not require that energy be minimized, so that scaling of the
thickness-integrated elastic energy w.r.t t as t → 0 in the model can well contain lower
order bending

(
O(t3)
)
, and even stretching (O(t)), contributions.

Applying the averaging operator to (62) and noting that

ui,llppmm = ui,ααββγ γ + 3ui,ββγ γ 33 + 3ui,γ γ 3333 + ui,333333
ui,llpp = ui,ααββ + 2ui,ββ33 + ui,3333
Cijkluk,lj = Ciβkαuk,αβ + Ciβk3uk,β3 + Ci3kαuk,α3 + Ci3kαuk,33
Sijkl,jkl = Siαβγ ,αβγ + (Siαβ3 + Si3αβ + Siα3β

)
,αβ3

+ (Si333γ + Si3γ 3 + Siγ 33
)
,33γ + Si333,333,

we obtain

ρüi = c3 ui,ααββγ γ − c2 ui,ααββ + Ciβkαuk ,αβ − c3Siαβγ ,αβγ

+ [3c3ui,γ γ 333 + c3ui,33333 − 2c2ui,ββ3 − c2ui,333
+Ciβk3uk,β + Ci3kβuk,β + Ci3k3uk,3

]+t
−t .

(66)

Similarly,

B ˙Siπσλ = e3μρ Siπσρ ,μ eλ3χ
(

eχξ3

{

c3
(
uw,αβξ − Swαβξ

)

−ε3 eξν3 e3γφSwαβφ ,γ ν − d3 l2f ′(l2|S|) Swαβξ∣
∣S
∣
∣

}

e3εζ Swαβζ ,ε

)

+e3μρ Siπσρ ,μ eλ3χ eχξ3 e3εζ
(
Swα3ζ ,ε

[
uw,αξ

]+h
−h + Sw3βζ ,ε

[
uw,βξ

]+h
−h

+Sw33ζ ,ε
[
uw,3ξ
]+t
−t

)
.

(67)

In Eq. 66, the terms beyond the first line represent forcings in the transverse direction to
the plate and need to be specified (it would be physically legitimate to assume many of
these terms to vanish); the third line of (67) has similar meaning and needs specification.
The functions u, S represent the fundamental fields of the plate theory, governed by

(66)-(67). Evaluating T (a) from (59) in terms of (u, S) solving (66)-(67) and K would imply
the satisfaction of balance of angular momentum (i.e., moment balance) in the through-
the-thickness averaged sense.
Remark 0.17. We note that non-evolving and non-vanishing Ŝ(1) = g̃, Ŝ(2) = b̃ ‘target’
composite eigenwall fields can be included in the considerations of this plate idealization
with only slight increase of tedium in bookkeeping.
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Within the context of energy minimization and for t > 0, if curl
(
curl
(
Ŝ(1)(s)))T = 0,

i.e. Ŝ(1)(s) satisfies the St.-Venant compatibility condition, then an infinitesimal isometry
exists (the reference configuration is assumed to be simply-connected) and the plate elastic
energy scales as ∼ t3 or of smaller magnitude; if Ŝ(1)(s) is not compatible, then the energy
has to scale as ∼ t. We note that when Ŝ(1)(s) is compatible, unless Ŝ(2) = ∇2v, where v is
s.t. (∇v)(s) = Ŝ(1)(s) so that ∇2v is unique, the plate elastic energy is going to scale as ∼ t3.
The requirement Ŝ(2) = ∇2v is non-generic for a freely-specifiable Ŝ(2) field that, however,
is satisfied by the choice Ŝ(1) = 0, Ŝ(2) = 0. Thus, in most circumstances the plate energy is
expected to scale as ∼ t3, if the plate energy is minimized.

Discussion
Starting from the work of the brothers Cosserat (1909) (as presented in Truesdell and
Toupin (1960)), through those of Toupin (1964), Green and Rivlin (1964), Mindlin
(1962; 1964), on to that of Fleck et al. (1994), Fleck and Hutchinson (2001), Hutchinson
(2012) and of Gurtin (2002), Gurtin and Anand (2009), higher order theories of con-
tinuum mechanics have made an appearance off and on and have been noted for their
intricacy and elegance, but always, arguably, with the nagging question of the physical jus-
tification (in their details1) in view of their added complexity. Our work aims to provides
a concrete, tangible, and compelling justification - that the precise treatment of defects in
the deformation and its higher order gradients is the raison d’être for higher order theory
in continuum mechanics.
Our work is in the context of non-Euclidean elastic sheets with negative in-plane Gauss

curvature. These objects are ubiquitous in nature and they display varied and intricate
multi-scale behaviors (Sharon et al. 2002; Audoly and Boudaoud 2003; Klein et al. 2007;
Kim et al. 2012; Gemmer and Venkataramani 2013). Their elastic behavior is significantly
different from that of elastic plates or spherical shells (Gemmer et al. 2016; Shearman
and Venkataramani, in preparation). In particular, they have “large" continuous families of
low-energy states obtained from piecewise isometries, with each piece possessing addi-
tional “bending" degrees of freedom. Thin hyperbolic free sheets are thus easily deformed
by weak stresses and their morphology is strongly dependent on the dynamics of the
growth/swelling processes, material imperfections, or other weak external forces. This
naturally motivates the need for tools to describe singularities/defects in these sheets,
their interactions and the resulting dynamics.
Mesoscopic defects in hyperbolic sheets, associated with their “soft" modes of deforma-

tion, include lines of inflection that terminate at branch points (Gemmer and Venkatara-
mani 2012; Shearman and Venkataramani, in preparation). These are higher-order defects
(termination of jumps in curvature) unlike the more common types of defects, disclina-
tions and dislocations. Irreversible effects in the dynamics of disclinations and disloca-
tions are associated with (macroscopic) plastic behaviors - stress-free large deformations,
internal stresses, and microstructure - in solids. A natural question therefore is – what
are the macroscopic manifestations of moving lines/surfaces of inflection and branch
points/lines?

1For example, none of the plasticity-related works in the above, while apparently motivated from modeling plasticity
arising from dislocations, recover all of the ingredients of the classical Peach-Koehler force in the driving force for their
dislocation-related inelastic deformation mechanisms.
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In this work we have begun to address this question in the context of ‘small deforma-
tions’ from a (potentially stressed, when occupied) reference configuration. A detailed
analysis and characterization of the kinematics of branch point defects and the discon-
tinuities in the deformation that they induce is achieved. This analysis, in its essence, is
a non-trivial adaptation and extension of the ideas of Weingarten (1901) and Volterra
(1907), from the dawn of elastic defect theory, to a context not restricted within the
kinematics of only strain (the symmetrized gradient of the displacement, as well as its
nonlinear analog) and its incompatibilities, and shows the natural way forward for deduc-
ing the constraints on possible jumps in deformation, i.e. global constraints, for locally
compatible higher order deformation gradients, albeit on domains with the simplest
non-trivial topology2. We then develop a thermodynamically consistent theory for the
dissipative dynamics of such defects in a nominally elastic solid, allowing for their interac-
tion with dislocation, g.disclination, grain, and phase boundary defects. The constitutive
guidance provided by this thermodynamic argument ensures that the model is equipped
with an energy (in)equality, a crucial necessary condition for its physical and mathemat-
ical well-posedness. The analysis uncovers the non-Newtonian, energetic driving forces
on these defects that couple their dynamics and mutual interactions to applied loads
and the deformation of the body3. Evolution of the defect fields subject to such driving
forces necessarily reduces the system free-energy by design, within an overall dynamics
that accounts for material inertia and is not restricted to its free-energy decreasing with
time (depending on the external driving). As an example, we explicitly demonstrate the
full set of governing equations for the case of branch point defects in an elastic material
and develop a ‘plate’ theory idealization for it. The development of the finite deforma-
tion version of the model poses no conceptual or technical barriers4 based on our prior
work in g.disclination mechanics (Acharya and Fressengeas 2015), but this same work
makes it clear that the bookkeeping tasks in pushing through the analysis are going to be
formidable.
We observe in passing that while we have been interested in developing a theory for

branch point/line defects and lines/surfaces of inflection, i.e. a theory for the discon-
tinuities and singularities of the deformation and its gradients up to order three, the
analysis makes it clear that the mathematical/continuum mechanical formalism extends
to describing the discontinuities and singularities of any finite integer order gradient of
the deformation, while including only stresses and couple stresses. As already observed
in Acharya and Fressengeas (2015), using the Second Law in global form is crucial for
this, albeit at the expense of the application of limited (but adequate, as we show in
“Uniqueness of the displacement field and boundary conditions” section) higher-order
boundary conditions about which not much is physically known anyway.
As a final comment, we note that a geometric model of growth mechanics, based

on Riemannian geometry and including evolution, has been proposed in Yavari (2010).
The viewpoint is different from ours and, in particular, the mechanics of incompatibil-
ity based on a Riemannian metric cannot describe (without non-trivial extension) the

2It should be noted that the question of conditions for global compatibility on domains with non-trivial topology is
different from the question addressed by Weingarten’s theorem and its extensions to higher order kinematics, which
deduce constraints on the discontinuous deformations arising from the absence of global compatibility.
3The fact that similar models, for lower-order defect kinematics, can indeed represent the complex nonlinear statics,
dynamics, and interaction of defects is demonstrated in Zhang et al. (2015); Zhang et al. (2016); Zhang et al. (2018);
Arora and Acharya (2020).
4For the worker proficient in general continuum mechanics.



Acharya and VenkataramaniMaterials Theory             (2020) 4:2 Page 27 of 29

‘softer’ branch point defects we focus on. We expect that one can recast our continuum
mechanical kinematic constructs within a differential geometric structure involving the
specification of a moving frame, and higher-order constructs based on such a field, thereby
making connections with the “geometric" viewpoint of growth mechanics.
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