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order to match the macro-scale Cosserat continuum to the micro-scale beam network.
Here we use a different approach that is based on an energetically consistent
continuization scheme that uses data from the beam network model in order to
determine continuous stress and strain variables in a set of control volumes defined on
the scale of the individual microstructure elements (cells) in such a manner that they
form a continuous tessellation of the material domain. Stresses and strains are
determined independently in all control volumes, and constitutive parameters are
obtained from the ensemble of control volume data using a least-square error criterion.
We show that this approach yields material parameters that are for regular honeycomb
structures in close agreement with analytical results. For strongly disordered cellular
structures, the thus parametrized Cosserat continuum produces results that reproduce
the behavior of the micro-scale beam models both in view of the observed strain
patterns and in view of the macroscopic response, including its size dependence.
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Introduction

Classical constitutive models for elastic materials behavior are local and do not possess
intrinsic length scales. For cellular solids the inadequacy of such models is obvious once
the relevant scale of a problem becomes comparable to the intrinsic length scale defined
by the cell size or strut lengths can be about the same order of magnitude as the system
size. As a result smaller samples may behave differently compared to larger ones.

Such size effects can be captured by material models which account for internal length
scales, such as constitutive equations in higher order continuum theories (Altenbach
etal. 2013). The idea goes back to Cosserat and Cosserat (1909) who enriched the classical
formulation by additional independent rotational degrees of freedoms (micro-rotations)
and their gradients. Later this was generalized by Eringen (1966); Eringen and Suhubi
(1964) to arbitrary, independent micro-deformations. The extended modeling capabili-
ties of such generalized continuum theories come with a cost: the generalized theories
require additional boundary conditions and the extended constitutive laws may, in the
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most general cases, involve very significant numbers of material parameters. Experimen-
tal determination of these parameters is much more difficult and error-prone compared
to the classical theory, efforts have therefore focused on the Cosserat continuum as the
simplest case. We mention attempts by Gauthier and Jahsman (1975) for torsion of a
circular cylinder as well as a series of studies by Lakes and co-workers (Anderson and
Lakes 1994; Chen and Lakes 1991; Lakes 1983; 1986; Yang and Lakes 1982) who inves-
tigated cellular materials including bone, polymeric and metallic foams with regards to
size effects. More recently Wheel and co-workers (Beveridge et al. 2013; McGregor and
Wheel 2014; Wheel et al. 2015) combined experiments and finite element simulations to
establish constitutive parameters for Cosserat-type models of heterogeneous materials.

Multi-scale simulation methods which relate a micro-scale model with full resolu-
tion of the material microstructure to a generalized continuum macro-model may serve
as an alternative or additional approach to experimental parameter identification. For
such scale transitions typically two approaches are used. In top-down, reverse model-
ing approaches, one uses the micro-scale model in very much the same manner as one
would deal with experimental data: One measures the (here size-dependent) system-scale
response and then tries to fit parameters of the generalized continuum to reproduce the
same behavior (see e.g. Diebels and Geringer (2014); Diebels and Steeb (2002); Mora
and Waas (2007); Tekoglu and Onck (2008)). Alternatively, bottom-up homogenization
methods can be used to transfer information from the underlying microstructure into
the continuum model. Different approaches exist, notably asymptotic methods (Dos Reis
and Ganghoffer 2012; Forest et al. 2001; Ghosh et al. 1996), polynomial expansion (Forest
1998; Forest and Sab 1998) and numerical Cauchy-continuum to higher order continuum
homogenization (Feyel 2003; Janicke et al. 2009; Kouznetsova et al. 2004). Many of these
approaches are limited to regular or periodic lattices or are computationally expen-
sive and thus not well suited for studies of stochastic systems, where many different
microstructures are needed for statistically meaningful averages. The problem is partic-
ularly pronounced in analysis of strongly disordered materials where the local response
may be controlled by heterogeneous meso-scale stress and strain patterns, which pose
inherent problems to homogenization schemes that rely on a certain regularity and
macro-homogeneity of the material response.

In this work we focus on two-scale modeling of cellular microstructures of variable
disorder where on the microstructure level we represent the materials by networks of
Timoshenko beams and on the macroscale by a Cosserat continuum. The basic idea to
represent a higher order continuum with lattice models goes back to Wozniak (1970) and
was applied in different variations e.g. by Bazant and Christensen (1972); Dos Reis
and Ganghoffer (2012); Kumar and McDowell (2004); Nady et al. (2017); Onck (2002);
Trovalusci and Pau (2014); Trovalusci et al. (2017). For a review of lattice/beam models
in micromechanics see Ostoja-Starzewski (2002, 2007). After a brief recap how we cre-
ate stochastic microstructures we present our own microstructures dependent approach,
which we have discussed in more detail elsewhere (Liebenstein et al. 2017). This semi-
analytical, energy based ansatz is used to obtain, from local stresses and deformations
in the discrete model, continuous fields for a micropolar description of the deformation
state in terms of displacement gradients, micro- and macro-rotations, and micro-rotation
gradients, and of the stress state in terms of the corresponding conjugate stress vari-
ables. Linear least square inspired minimization is used for fitting representative material
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parameters to these data. Our investigations cover the spectrum from regular honey-
combs to random cellular structures. The resulting constitutive parameters are validated
by comparing global spatial stress and strain patterns to those derived from a direct
implementation of a Cosserat continuum for compressive and shear loadings of finite
samples.

Model

Computational generation of the microstructure

Most cellular solids do not possess regular, periodic microstructures such as in hon-
eycombs or other lattice-like structures, but rather exhibit stochastic cellular patterns
with varying degree of statistical irregularity. To model the behavior of such stochas-
tic microstructures in a statistically meaningful manner one has to rely on ensembles
of statistically equivalent samples, rather than on single realizations. In other words, a
comparison of single (or few) realizations across different system sizes is meaningless,
as the response of single realizations may be dominated by microstructure fluctuations
whereas systematic trends are borne out only upon ensemble averaging. To generate such
ensembles we use the approach of Gibson and Ashby (1999); Tekoglu and Onck (2005);
Zhu et al. (2000) to represent the cellular microstructure as a two-dimensional network of
Timoshenko beams for which the network structure is generated via Voronoi tessellation
of the system plane. The Voronoi tessellation represents reasonably the foaming process
under the assumptions (Boots 1982; Van Der Burg et al. 1997) that

all nuclei appear simultaneously,
the nuclei remain fixed in position throughout the growth process,
each nucleus grows isotropically, i.e., at the same rate in all directions,

Bow o

the growth stops for each cell whenever it comes into contact with a neighboring

cell.

To tune the degree of irregularity we adopt a method originally proposed by Van Der
Burgetal. (1997). As a starting point seeds are generated on a triangular lattice with lattice
constant Ap, which results in a Voronoi tessellation consisting of regular honeycombs.
Irregular systems are created by perturbing the position p of each seed by a stochastic
vector ép. In order to obtain a spatially isotropic distribution the direction of the pertur-
bation is chosen isotropically, whereas the perturbation distance |§p| is assumed to be

exponentially distributed:

Bpl )\ 1 ( 11sp]
(o) =5 (5ay) v

The disorder parameter 8 > 0 defines both the mean value and the standard deviation
of the distribution.

Size effects are one main characteristic of materials and models with an intrinsic length
scale. In order to faithfully compare different system sizes one must ensure that all systems
have the same relative density pr and the same aspect ratio R = W/H between the
system width W and the system height H. Under the assumption that all Ng beams have
the same in-plane width w and out of plane thickness ¢ but vary in length /; > w, the total

volume covered by the beams is
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Np
Vg =tw Z l;. (2)
i=1

The relative density of a system is
N;
Vs w B

0 = g 2 b (3)
tWH —~ WH ~

Prel =

which is kept constant at p,e; = 0.1 by proportional scaling of W and H. As a default
aspect ratio for the systems we use the aspect ratio Ry = 2/+/3 of a single regular honey-
comb. Each Timoshenko beam is assumed to be linear elastic with Young’s modulus Eg =
0.1 GPa and Poisson’s ratio vg = 0.3. The cross-section is quadratic: £ = w = 0.05Ap with
a shear coefficient proposed by Cowper (1966) of « = 10 + 10vg/(12 + 11vp) ~ 0.85.

Construction of a beam network according to the outlined procedure leads to a single
realization of a disordered cellular microstructure with disorder parameter j. Since we
are interested in studying surface effects in finite samples and comparing samples of dif-
ferent disorder, however, a further source of statistical uncertainty needs to be taken into
account. The surface response of nearly regular honeycombs strongly depends on the way
boundaries are located with respect to the honeycomb lattice. Consider the system shown
in Fig. 1 where we have closed, but also barely open honeycombs at the right and left
boundaries. Small perturbations of this configuration, i.e. a shift of the structure to the
left or right, may open up or close honeycombs at the surfaces. In highly disordered sys-
tems, the stiffness changes resulting from such shifts are expected to cancel on average.
In regular structures, however, they may significantly alter the overall response. In regular
honeycombs such effects may be desirable and even engineered, however, if we want to
compare regular with random cellular structures we need to average them out. This can
be done by averaging over multiple realizations where we shift the system boundaries by
random fractions of the honeycomb lattice period,

Fig. 1 Microstructure for small irregularity (8 = 0.05), system height H = 7 Ap; boundary conditions are
applied at the surface nodes marked in red while the left and right boundaries are free; note that a small shift
of the structure to the left would open the cells at the left boundary and considerably reduce the stiffness of
the structure under the imposed loading
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Ay = 0.5ApRy(—1,1),

1 (4)
Ax = (0.5 + \/§> ApRy(—1,1),

where the random numbers Ry, (—1, 1), Ry (—1, 1) are uniformly distributed between — 1
and 1. Such a realization can be envisaged as a randomly located cut-out from a larger
system. We therefore speak of random cut-outs when referring to the randomly chosen
location of system boundaries with respect to the lattice underlying our beam network
construction. A single system realization, hence, consists of a random cut-out from a
random microstructure realization.

Each system realization shows a slightly different system response. This poses a prob-
lem when comparing with results from the deterministic Cosserat continuum model:
On the level of single realizations, we cannot be sure whether differences are system-
atic (the Cosserat continuum provides an inaccurate or even inadequate representation of
the beam systems) or whether they are a mere reflection of the inherent scatter between
different beam system realizations. To mitigate this problem, we estimate the scatter of
the system response between different realizations and average over a sufficiently large
ensemble, with ’sufficiently’ defined by the condition that the statistical scatter of the
ensemble-averaged response ought to be below 1% of the mean value of the response.
Details are discussed in Appendix A.

In the present work we study two loading cases: displacement driven compression and
shear. For a homogeneous continuum, these loadings would correspond to pure uniaxial
compression and to simple shear loading. The displacements # and the rotations ¢ of the
beams at the boundaries (cf. Fig. 1) are given in Table 1 and chosen such that they are com-
parable to experiments (Andrews et al. 2001; Tekoglu et al. 2011). The use of displacement
controlled boundaries may lead in general (e.g. Chen et al. 1999, and references therein)
to a stiffer behavior compared to force controlled boundary conditions. However, Silva
et al. (1995) reported, for geometries and boundary conditions similar to those used in the
present work, that in large samples where surface effects can be neglected the deviation
between force and displacement controlled response becomes small (< 1%).

It should be noted that from a macroscopic point of view, homogeneous uniaxial com-
pression of an isotropic continuum is not expected to produce higher order/size effects,
because uniaxial loading does not induce micro-rotations (Kirchner and Steinmann
2007). On the meso-scale, however, local rotations are always present, and in strongly
disordered systems they even might play an important role as a result of structural
inhomogeneities. We therefore study both loading cases.

Continuum representaton of stresses and strains in the beam network

The modeling and finite element simulation of cellular solids as a network of Timoshenko
beams gives naturally forces and displacements, evaluated at nodes of the beam elements.
To make the transition from this representation at discrete nodal points to a spatially
continuous Cosserat continuum we use a method introduced by the authors (Liebenstein

Table 1 Boundary conditions for the two investigated loading conditions

Loading Bottom (y = —H/2) Top (y=H/2) Left (x = 0) Right (x = w)
Compression Uy = —0.025H uy = 0.025H free free

Simple shear Uy = —0025H,¢ =0 Uy = 0.025H,¢ =0 free free
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etal. 2017) that is based on the energy equivalence of the beam network and the contiuum.
The balance equations for the Cosserat continuum are (see e.g. Eringen (1999); Forest

(2009))
V.(c +8) =0, (5)
Vu—S8:e=0, (6)

where o is the symmetric stress and S the skew-symmetric stress tensor which balances
the couple stress . The symbol € denotes the Levi-Civita or permutation tensor, V the
gradient operator, . is the single contraction and : the double contraction of two tensors.
The corresponding stress traction and couple stress traction read

t=@0+S8"n )
m=p'.n (8)

With the displacements # and the rotations @ the corresponding work conjugated
strains are related via the strain energy density W,

oW, 1 T

=p—C == (Vu+vd), 9

e =p— 2(u+ u') (9)
oW, 1

R =p aSC =3 (Vu —VuT) + €.0, (10)
oW,

Vo =p—-=. (11)
op

For the derivation of equivalent stresses and strains three major assumptions are made
(cf. Liebenstein et al. (2017)): (i) the virtual work § W}, of the sum of all beams Nj, is the
same as the virtual work of the continuum § W, in any given control volume V%, (ii) the dis-
placements and rotations are linear in each control volume and thus stresses and strains
are piecewise constant and (iii) the junction point and the centroid of the control volumes
are close to each other. Under these assumptions one obtains the following relations for
the control volume averages:

1 1
(0)e=— | odV=sym|— Fgi), (12)
¢ Vc Ve Y Vc 1(2:;
1 1
(S)e=— | SdV=skw|— > F'al), (13)
c JV, Vc k=1
LI (14)
=— | n
Vc Ve
1
_ 4 k gk k k
(H)e = Vc,;<M ! ><F>®l,

where x denotes the cross-product, F is the beam force, M the moment acting on a
triple (or higher) junction point and I is the so-called beam vector, which is the differ-
ence between the midpoint between two junctions and a junction point. The averaged
displacement and rotation gradients are for an N,-sided control volume calculated from
the nodal displacements and rotations as
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1
(e)c = — VudV (15)
c JV,
Ne k k
_ L (”"‘”+1 o n(k,k—H)) plk+1)
Ve k=1 2
1
(Vo)e = — | VedV (16)
cJV,
Ne k k
_ L (“’JF“’H ® ,,(k,k+1>> plkk+D)
= 5 ’
€ k=1

where u* is the displacement and w* the rotation of corner node number k in a clockwise
enumeration, b***1 is the length of the polygon side which connects nodes k and k + 1,
and #n®**D is the outward pointing normal vector to this side. From the displacement
gradients, strain-like quantities derive in analogy to Egs. (9), (10) as

1

(e)e =3 ((e)c + (e)]), (17)
1

(&™) = 5 ((e)c — (€)!) + €.(®)c. (18)

The averaged control volume rotation (). is calculated by a linear interpolation of
the beam-midpoint rotations to be consistent with the constant rotation gradient. In
addition to the control volume averages, the system average of a quantity () can be
approximated as

1 &
Ve R — Vk-k, 19
s = 0 3 Ve (19

where Vs = 211:[;1 VK is the system volume and Ny the number of control volumes in the
system.

The control volumes are constructed to match the local microstructure. Each control
volume is associated to a triple (or higher) junction in the beam network. The control
volume corners are the midpoints between the chosen junction point and the connected
neighbor junctions. Additional corner points located at the center points of the Voronoi
tessellation ensure that the control volumes provide a tessellation of the entire domain.
The exact details of the construction process are given by Liebenstein et al. (2017).

Identifying Cosserat parameters

Because of the randomness of the underlying microstructure each realization is locally
inhomogeneous and also anisotropic regarding its local material properties. A macro-
scopic representative system however exhibits homogeneous and isotropic material
behavior. This means that we can not compare a single realization with a higher order
continuum but rather we need to average over an ensemble of many realizations: The
ensemble average restores the statistical homogeneity and isotropy of material behavior.
For the averaging procedure we first notice that by construction the quantities are piece-
wise constant in the control volumes which are system specific. To perform averages we
need to interpolate them to a common grid. In order to retain the local structure of the
stress and strain fields of each realization we use a nearest neighbor interpolation to a fine
grid such that there are approximately 6-7 interpolation grid points per control volume.
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This ensures that the localized structure of the stress and strain fields of each realization
is preserved as shown in Fig. 2.

The resulting interpolations of a quantity (-) use a common grid and can be directly
averaged over all Ng microstructure realizations, and all Nco cut-outs per realization to
analyze the average system response

1
(= NN >0 (20)

Ns Nco

As we are using a regular grid the system average of the ensemble average is
1
O = 1= 20 (21)

where Ng is the total number of grid points. Examples of the resulting, ensemble averaged
stress field for regular and irregular systems are depicted in Fig. 3.

The averaged system has its counterpart in a higher order continuum for which we want
to determine effective material parameters. While the effective classical material param-
eters can be identified via direct analysis of reaction forces and boundary displacements
(similar to Eq. (41)) the Cosserat material constants are not as easily accessible. However,
our continuization method computes stress-like {(o')¢, (S)c, (1)<} and strain-like quanti-
ties {(&)¢, (e¥)¢, (Vw).} independently and thus allows for an identification of material
properties. As showed by Gibson and Ashby (1999); Warren and Kraynik (1987), periodic
regular honeycombs are (macroscopically) isotropic. Completely stochastic systems of
Voronoi cells are expected to be isotropic as well, similar to multi-grain materials, where
each grain itself is anisotropic, but on average the system behaves isotropically. Hence we
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Fig. 2 Stresses in the control volumes (left) and nearest-neighbor interpolation (right) in beam networks,
system parameters: H = 19Ap and B = 0.3; top: compressive loading, bottom: shear loading; in the left-hand
images the microstructure is shown in the background in grey
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Fig.3 Averaged system response of beam networks with regular (8 = 0) and irregular (8 = 5)
microstructures, simple shear loading by rigid displacement of the top and bottom surface by + 0.025H,
system height H = 19; note the more rigid response of the disordered system

assume, in the limit where length scale effects are unimportant, that the ensemble shows
(statistically) isotropic effective material behavior with

(o) = C: (€)gs (22)
(S); = 2Gc(eM)z, (23)

where C is the classical isotropic linear elastic stiffness tensor which may be expressed in
terms of the Young’s modulus E and the Poisson’s ratio v in standard manner. G, is the
(isotropic) couple modulus which is a scalar quantity because for the studied 2D struc-
tures the z-component of the beam vector(/, = 0) as well as the x- and y-components of
the rotation vector (wx = wy = 0) are zero — hence, there is only a single axis of rota-
tion. From Eq. (14) it follows that the non-zero components of the couple stress u have
the same indices as the non-zero entries of the rotation gradient Vw:

(W)e = (zx)cer ® ex + (Uzy)ce: ® ey, (24)
(Vo) = (wzx)ce; ® ex + (wzy)ce; ® ey. (25)

With that a general, anisotropic relation between the couple stress and the rotation
gradient is

(Kzx)c _ 7 0 (Wzx)c (26)
<sz)c 0 » (wz,y>c
———
r

where I' is the anisotropic Cosserat stiffness, which depends on the two additional
Cosserat coefficients y1, y2. Altogether the parameters which need to be identified are
P ={E v, G v1, 2}

As a method for determining the material constants we apply a fitting approach similar
to linear least squares. To obtain effective fitted parameters P we consider the ensemble
& of all Ng x Nco x Ng gridded control volumes. Over this ensemble we seek to minimize
a set of cost functions ® with respect to P

P= arg min®. (27)
P

Because C(E,v), G¢, I'(yy1, y2) are independent of each other we can define and mini-

mize cost function for each set of constants separately. As cost functions the differences
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between measured stresses and the stresses from the multiplication of the elastic con-
stants with the strains are taken and the sum of their squares is minimized:

e =) (o) —C:(e)e): (o) —C: (£)o), (28)
Ec

D, = Y ((S)e — 2Ge(eM)e) : ((S)e — 2Ge(eN)e), (29)
Ee

Or =Y ((We—T: (Vo)) : (ke =T : (Vo)o). (30)
Ee

In order to ensure a positive strain energy density for the 2D (plane strain) case, elastic
parameters are restricted to

E>0 —-1>v>1 G.>0 y1 >0 yy > 0. (31)
Numerically this is done via an additional penalty term of the form
®Pe" = 1000P%, (32)

which we add if the elastic parameters are outside of the admissible range.

There are, of course, alternative methods for determining elastic constants. A straight-
forward modification of the above approach is to consider, in defining the cost functions,
strain differences and compliances instead of stress differences and stiffnesses. It turns
out that this does not lead to any appreciable changes in the resulting elastic constants.

A second alternative method for defining cost functions consists in comparing expres-

sions that directly represent elastic energy density contributions, for instance

Oc = Z ((€)c: C:(e)e — (0)c:C1e (a)c)z, (33)
Ec
2
P, = ; ((eR)C : ZGC(ER)C —(8)¢: Zéc (S)C) , (34)
Or = Z ((Vc:))C T (Vw)e — () : T (y,)c)z, (35)
Ec

This approach yielded broadly similar results which, however, converged much less reli-
ably for strongly disordered systems with high fluctuations in local stresses and strains.
Instead of finding the parameters for the effective, averaged systems it might be possible
to determine parameters (stiffnesses or compliances) locally for each control volume and
then average over all obtained local elastic constants. A problem of this method is that one
cannot use the global statistical symmetries of the material and can, therefore, not deter-
mine local elastic constants separately for the different loading cases. We leave a further
exploration of such direct averaging methods as an open question for future studies.

Results

As a benchmark for our results we use the well established analytical solutions for regu-
lar, periodic honeycombs of Gibson and Ashby (1999). For beams which can deform by
bending, axial and shear deformation and have the material properties py = 0.1, Eg =
1-10%Pa, and vg = 0.3 as used in our simulations, the theoretical Young’s modulus,

Poisson’s ratio and shear modulus are
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EX ~ 144 -10° Pa,
Vi A 0971, Gi ~ 3.65 - 10* Pa. (36)

The Cosserat coefficients y; can be reinterpreted in terms of internal lengths &; (Diebels
and Steeb 2002): & = /y¥;/2G. with i = 1,2. The results for three different sizes
are shown in Fig. 4. For all sizes the results are very similar which indicates that the
computed parameters represent geometry independent material properties. For regular
systems, the Young’s modulus and Poisson’s ratio match very well the analytical solution.
As also observed by Zhu et al. (2001) and Liebenstein et al. (2017), increasing irregular-
ity increases the elastic moduli of bulk systems, which can be observed for both loading
cases. Poisson’s ratio decreases with higher randomness, similar to the result reported by
Zhu et al. (2006).

For both loading conditions the couple modulus G. decreases with increasing degree
of irregularity, until the irregular systems have a couple modulus of about G, ~ 0.08G7.
These results are consistent with experimental data quoted in a recent review by
Hassanpour and Heppler (2017) who indicate values in the range of G ~ 0.1G} for
polystyrene foams, syntactic foams and a polymethacrylimide foam. The internal length
& shows an anisotropic behavior for regular systems. For both loadings considered, one
of the coefficients is almost zero, whereas the other one is of the order of 0.1Ap. With
increasing irregularity both internal length parameters converge to a common value of
about & &~ 0.3Ap. Higher values of about one cell size (Ap in our case), as indicated by the
experimental data of Hassanpour and Heppler (2017); Lakes (1991); McGregor and Wheel
(2014), are not consistent with the couple stress patterns that derive from our microscale
model. We will demonstrate this below.

For validation we use a direct comparison between averaged results from our micro-
scale beam model and a finite element implementation of the Cosserat continuum that
uses the material parameters of Fig. 4, averaged over all loading modes and system sizes.

Compression Simple Shear
1.4 —
* o
1.2 - = - f
~
R 1.0 f .
T T T T
1.0 1= =
R 1"
§ 0.9 ”o‘\é::'»,,.lf,,,,,,,, —t | ’F’S‘%
N 3‘«\\\ H in Ap
0.8 T T T T T T T 77‘ < 16
{; 0.6 i 19
< 0.3 :\;? i ‘%(’ —(— 25
@] - R '@g;, O S S S—
0.0 — I- T r T T
0.6
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=" ) asmm -
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0 1 2 3 4 5 0 1 2 3 4 5
B B
Fig. 4 Fitted material parameters; £ and v are normalized by the theoretical values for regular honeycombs,
the coupling modulus G¢ is normalized by the theoretical shear modulus, and the internal lengths &; are
given in units of the cell size; data for compression (left) and for simple shear (right)
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Macroscopic size effects show only if Vi # Vu', which is not the case for uniaxial
compression. (Note that it is nevertheless possible to determine internal length scale
parameters by connecting the fluctuating local variables in the individual realizations -
which is what we have done above in case of compression). Therefore, only simple shear
loading of the Cosserat medium is considered for validation purposes. We simulate a thin
strip with the same width and height as the beam network and a thickness of D = 0.05H.
By using only 1 element for the thickness, this loading state is similar to a plane stress
loading. The intrinsic length requires a mesh which captures the thickness of the bound-
ary layer. Thus the mesh is locally refined towards the surfaces such that the element
width is significantly smaller than the internal length. The same boundary conditions as
for the beam network are chosen (cf. Table 1) i.e. no in-plane Cosserat rotations and no
x-displacements at the top and bottom and a y-displacement at the top which induces a
engineering strain of &}, = 5%. The y-displacement at the bottom boundary is set to zero
whereas the out-of-plane rotations and displacements are unconstrained everywhere else.

As one can see from Fig. 5, left and centre, the stress distribution and the distribution
of the rotations match very well. The maximum rotations are found along the free sur-
faces and gradually decrease towards the inner part of the specimen. The shear stresses
show a characteristic distribution similar to the distribution for a classical continuum.
From the free surfaces they gradually increase towards the center. The overall average
of the Cosserat continuum system slightly under-predicts the average response. Couple
stresses are concentrated in boundary layers at the top and bottom edges of the sam-
ples. Because the couple stresses p are proportional to the rotation gradient Vw, the
continuum and beam systems match badly near the specimen corners where both micro-
rotations and micro-rotation gradients are high and rapidly alternating. In this region the
continuous solutions of the Cosserat equations cannot easily match the continuized fields
that by construction are piecewise constant over control volumes of finite size. In general,
however, the agreement between the beam system and the Cosserat continuum is excel-
lent. We quantify the overall agreement by evaluating the average moment of the couple
stresses with respect to the symmetry axis of the system, (yu) where y = 0 marks the
position of the horizontal symmetry axis (note that the direct average (u) is zero for sym-
metry reasons and can therefore not be used for comparison purposes). Comparing (yu)
for the beam and Cosserat systems again demonstrates good quantitative agreement. For
comparison we have also included computations which assume & = Ap as suggested by
Hassanpour and Heppler (2017); Lakes (1991); McGregor and Wheel (2014). The results
of these computations are shown in Fig. 5, right. It is evident that they do not provide an
adequate representation of the behavior of our beam model as the obtained values of (yu)
differ by one order of magnitude.

For further investigation we study row-wise averaged profiles of the rotations, the skew-
symmetric stresses and the couple stresses:

1 w

deon ) = 1 [ (e ), (37)
1 w

<Sxy>r0w0’) = W/(; <Sxy>E(xry)dxr (38)
1 w

<sz)row()/) = W/(; (sz>E(x,y)dx~ (39)
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Fig. 5 Comparison of rotation, stress and couple stress fields under simple shear; left: data for regular beam
system (8 = 0) averaged over 300 randomly cut-out boundary configurations; center: Cosserat continuum of
the same size with material parameters as given in Fig. 4; right: Cosserat continuum with literature parameter
& = Apbut same E, v, G: and dimensions as the Cosserat simulations in the center

On the left of Fig. 6 one can see again the discussed effects. The rotation profiles match
quite well, except for the outermost layer. The same is true for the couple stresses, which
show very good agreement. The skew-symmetric stresses of the Cosserat continuum over
predict the beam network response at the surface. It can be seen that the response of
the beam network slightly oscillates near the boundaries which can be attributed to the
spacing of the honeycombs and the fact that stresses and strains are assumed constant
over the associated control volumes.
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Fig. 6 Rotation, skew-symmetric stress and couple stress profiles under shear with different boundary
conditions; parameters as in Fig. 5, center; profiles are obtained by averaging the two-dimensional fields
shown in Fig. 5 over the 'horizontal’ direction; left: simple shear loading with fully constrained top and bottom
surfaces; right: shear loading with micro-free rotation at the top surface and fully constrained bottom surface

To test the predictive power of the parameterized Cosserat model we use the deter-
mined material parameters in a simulation with qualitatively different boundary condi-
tions. Again a shear problem is considered, with the difference that the micro-rotations
¢ (H/2) (beam system) and w(H/2) (Cosserat continuum) are now unconstrained at the
top surface. In comparison to the doubly-clamped shear system this introduces an asym-
metry into the problem which should reflect in the system response for the boundary
layer as indeed observed in Fig. 6 on the right. The bottom surface (y = —H/2) shows an
identical behavior as in the fully clamped system. In the Cosserat model the couple stress
and skew-symmetric stress at the micro-free boundary (y = H/2) are zero up to numer-
ical errors. The rotation at the top boundary is non-zero to fulfill the balance equations
and higher order traction boundary condition m(y = H/2) = 0. Whereas the rotations
match quite well the couple stress and skew-symmetric stress differ Even though no addi-
tional fitting was done the Cosserat continuum matches well with the beam network, so
that we conclude that the obtained parameter combination gives a reasonable approxima-
tion of the beam network and can be regarded as an informed way to determine Cosserat
material properties.

Finally we compare the effective system response for the double-clamped, shear loaded
systems. In analogy to the beam network (41) the effective system response of the

continuum is

1
Cr = » /tdi.
Aé‘xy A

In Fig. 7 the averaged effective stiffness of all beam systems is for different irregular-
ity parameter 8 compared with result for the corresponding, fitted continuum models.
The main trends, namely (i) the increase of overall stiffness with increasing degree of dis-
order and (ii) the existence of a size effect in the sense that systems of reduced height
show a softer response, are well reproduced by the continuum model, though both
the size effect and the disorder-induced stiffening are slightly more pronounced in the

continuum model.

(40)
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Fig. 7 Normalized system responses for different irregularities under double-clamped simple shear loading;
left: beam models, right: Cosserat continuum models; disorder-dependent Cosserat parameters as in Fig. 4

Discussion and conclusions

We presented a two-scale modeling approach for irregular cellular solids. On the micro-
scale, we use beam models - an approach which implies a significant degree of ide-
alization but is computationally much more efficient than for example modeling the
microstructure with (Cauchy-) continuum elements. Computational cost is an impor-
tant factor when dealing with strongly disordered microstructures where load is inter-
nally distributed in a strongly heterogeneous manner through force transmission chains
(Liebenstein et al. 2017): for small sample sizes as considered here, such force transmis-
sion chains may span the entire sample and their stochastic character causes significant
sample-to-sample variations. Hence, an efficient computational scheme is indispensable
in order to capture the statistics of variations and to reliably determine the average behav-
ior of samples with a given degree of irregularity. Despite the large sample-to-sample
variability, the computational efficiency of beam models allows us to determine not only
macroscopic stiffnesses but also smooth stress, strain, and rotation fields by averaging
over sufficiently large ensembles of typically 6000 microstructure realizations for each
system size and irregularity.

Our next step is to use the data from the micro-scale beam models in order to
parametrize a macroscopic, Cosserat-type continuum model. The standard approach
is a (bottom-up) homogenization where one seeks to derive macroscopic, effective
materials properties through averaging the micro-heterogeneous material response over
a representative volume element (RVE). We note that these methods may be prob-
lematic when it comes to assessing size dependent effects in structurally disordered
materials which exhibit strongly heterogeneous stress and strain patterns with long-
range correlations. This is the case in our micro-scale simulations: As demonstrated by
Liebenstein et al. (2017), stress transmission in the strongly disordered beam models (high
disorder parameter ) occurs through correlated stress transmission chains. In the regime
of system sizes where size effects are relevant, in other words in the range of interest
for a higher-order continuum model that incorporates internal length scales, these corre-
lated stress transmission chains span the entire simulated sample. Since these chains are
of stochastic nature, this leads to very significant sample-to-sample fluctuations in the
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macroscopic response. In other words, the simulated micro-sample sizes themselves are
below the RVE scale.

In our case the transition from the beam model to the Cosserat continuum is on a
local scale. First we map, in an energetically consistent manner that assumes the Cosserat
continuum structure, the stress and deformation fields on the discrete beam level onto
spatially continuous fields defined on control volumes that are characteristic of the par-
ticular microstructure. Determination of stresses and deformations is independent, and
elastic constants are identified by seeking an optimum match between stress and con-
jugate strain variables through linear mappings on average over the ensemble of local
control volumes. The approach used in the present study is contingent upon several con-
ditions. (i) The material of the beam system must be isotropic. This is, for instance, not
the case for an additively manufactured cellular structure where the deposition process
imposes a preferential direction on the matrix material. (ii) The geometry of the indi-
vidual control volumes (the cells) must be statistically isotropic. This feature is inherent
in our construction of the beam network, which is based upon an isotropic honeycomb
reference structure from which irregular structures are obtained via radial displacements
of the cell seeds. (iii) The correlations between different control volumes must be sta-
tistically isotropic. In our construction of the beam network this is ensured by making
the displacements of the cell seeds statistically independent and isotropic. (iv) There are
no long-ranged geometrical correlations in the beam network. In fact, our construction
method for the beam structure ensures that the shape fluctuations of different control
volumes shapes are mutually uncorrelated beyond the nearest neighbors. This absence
of correlations ensures that we can infer directly from the local behavior to the system
scale behavior — which would be impossible if geometrical correlations between different
control volumes were present.

Under these conditions, we can directly infer from the scale of the individual control
volumes to the scale of the entire beam network. A remarkable consequence is that we can
determine internal length scale parameters even in deformation settings where we do not
expect macroscopic size effects, such as in uniaxial compression. The reason is that the
local stress state is, owing to the micro-scale disorder of the material, always multi-axial
such that rotation effects are present even in deformation settings that are macroscop-
ically rotation free. Indeed the material constants we determine from the local fields in
compression tests are in good agreement with those from simple shear tests. When used
to evaluate size dependent response observed in different shear loadings, these param-
eters perform well even though they have not been fitted to reproduce shear data. The
fact that one can use different uniform or non-uniform deformation settings to probe for
the same parameters and then cross-validate them allows to ensure one is indeed deal-
ing with material parameters and not parameters that characterize a specific deformation
setting only.

Even though higher order continuum theories have their roots already 120 years ago
they are still not commonly used in engineering applications. One reason is the diffi-
culty to reliably determine constitutive parameters, of which in general theories there
may be many. Once increasing computational power allows to efficiently simulate large
systems and/or large ensembles of systems that are obviously inaccessible by experiment,
this disadvantage may become less serious. In the presented work we showed, in a proof-
of-concept study, how Cosserat material parameters can be deduced from simulations of
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2D cellular structures. The parameters are obtained by a two step procedure. First the
beam network is represented by an equivalent Cosserat continuum. From that the param-
eters are identified by a simple linear least square optimization approach, relying on local
information only. The whole procedure works without fitting or adapting of parameters
by hand. The beam modeling itself is purely linearly elastic, which of course means that
the presented fitted parameters also assume a linearly elastic Cosserat continuum, i.e., we
neither consider physically non-linear effects such as plasticity, beam breaking or beam
contact, nor do we account for geometrically nonlinear phenomena such as beam buck-
ling. However, we note that our continuization method can be used even if breaking of
beams disrupts single control volumes and creates internal surfaces. Hence, it can be used
to assess stress states in damaged or cracked samples and we plan to use the method
to evaluate changes in stress transmission patterns occurring in damaged, brittle cellular
structures in the approach to failure.

Of course there remain open questions. The present study has focused on statistically
isotropic or near-isotropic systems with a single elementary length scale (the cell size).
The method we propose has limitations when applied to anisotropic microstructures
where there can be, besides anisotropy of the properties of the beam material two different
sources of geometrical anisotropy: Anisotropy on the level of the individual microstruc-
ture element (e.g., an anisotropic average cell shape), and anisotropy in the arrangement
of different elements, which might depend on additional correlation lengths (e.g., the
shape of regions of higher-than-average or lower-than-average local density). The latter
features cannot be captured by an approach which relies on information on the smallest
microstrucural length scale, namely the individual cell or control volume, alone and may
thus necessitate more sophisticated approaches. Further studies are also needed in order
to investigate how the proposed method can be extended to three-dimensional open- or
closed-cellular structures.

Appendix

The statistical ensemble

As discussed, a single realization of a beam system cannot be meaningfully compared with
a continuum model, at least if the beam system is small. This poses problems if one wants
to assess size effects, which of course become prominent only in small systems, and their
modelling by generalized continuum models such as the Cosserat model. We therefore
need to strictly distinguish between a system ensemble (which can be compared to a con-
tinuum model on any scale) and an individual system which cannot. In our simulations
different beam system ensembles are characterized by different values of the common
system size and degree of disorder (parameter ), other parameters (density, material
parameters, beam parameters) being kept fixed. To obtain statistically reliable values for
the response of the beam system ensemble, we average over multiple system realizations,
a system realization consisting of a random cut-out from a random microstructure, with
the size of the cut-out and the disorder parameter 8 being kept fixed at the values char-
acterizing the ensemble. We now focus on system-scale properties such as the effective
shear stiffness in a shear test,

1 M

* k

== > F, (41)
XY k=1
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where

« _ lux(y =H/2) —ux(y = —H/2)|
xy — H

is the effective engineering strain and Fy are the load induced reaction forces in x direc-

&

(42)

tion of all the beams Ny at the loaded top and bottom surfaces. All system realizations are
subjected to the same boundary loading. The resulting response values will scatter. We
denote by (C*)g the average over Nco different cut-outs from the same microstructure,
and by sco the corresponding standard deviation. Furthermore, we denote by (C*) the
average of (C*)s over N different microstructure realizations and by s the correspond-
ing standard deviation. We observe that the statistical deviations from the respective
mean are independent between different cut-outs, and between different realizations.
However, strength variations in a given cut-out may be realization dependent, indicating
correlation. An upper estimate for the total scatter is then given by

s = ss/y/Ns + sco/v/Nco. (43)

We adjust the numbers of realizations, and of cut-outs, in such a manner that this
quantity remains consistently below 1% of the mean,

s < 0.01(C*). (44)

For highly ordered systems, where sg is small or even zero (regular honeycombs) but
sco can be significant for small systems, this implies a high value of N¢o, typically Nco =
400. For small and strongly disordered systems, conversely, one uses a high value of Ng
(typically 400) but a small value of Nco, typically Nco =~ 20.
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