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Abstract
The standard way of modeling plasticity in polycrystals is by using the crystal plasticity
model for single crystals in each grain, and imposing suitable traction and slip
boundary conditions across grain boundaries. In this fashion, the system is modeled as
a collection of boundary-value problems with matching boundary conditions. In this
paper, we develop a diffuse-interface crystal plasticity model for polycrystalline
materials that results in a single boundary-value problem with a single crystal as the
reference configuration. Using a multiplicative decomposition of the deformation
gradient into lattice and plastic parts, i.e. F(X , t) = FL(X , t)FP(X , t), an initial stress-free
polycrystal is constructed by imposing FL to be a piecewise constant rotation field
R0(X), and FP = R0(X)T, thereby having F(X , 0) = I , and zero elastic strain. This
model serves as a precursor to higher order crystal plasticity models with grain
boundary energy and evolution.

Keywords: Polycrystal plasticity, Multiplicative decomposition, Grain texture,
Dislocations

Introduction
When a polycrystalline material is deformed, its microstructure generally experiences a
reorientation of the crystal lattices of each grain towards a preferential distribution of
orientations known as crystallographic texture. The study of texture evolution is impor-
tant because textured metals typically exhibit plastic anisotropy, which plays a significant
role on mechanical properties. Predicting the evolution of deformation-induced texture
and the accompanying plastic anisotropy is the subject of polycrystal plasticity models
(Beaudoin et al. 1993; Sarma and Dawson 1996; Kok et al. 2002; Estrin 2002). These
models are typically formulated assuming that the microstructure of the polycrystal is
associated with a representation of microscopic crystals whose individual responses, on
average, determine the macroscopic response of the polycrystal. At the level of each
grain, plastic deformation occurs by the standard mechanism of dislocation slip, and
so (i) constitutive equations that relate dislocation motion to crystal deformation must
be defined, and (ii) an averaging scheme that relates the response of individual crys-
tals to the macroscopic stress-strain response of the polycrystal must also be defined.
For single crystals, a multiplicative kinematic decomposition of the deformation gradient
into elastic and plastic parts is typically used. This decomposition adequately describes

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41313-017-0006-0&domain=pdf
mailto: jmarian@ucla.edu
http://creativecommons.org/licenses/by/4.0/


Admal et al. Materials Theory  (2017) 1:6 Page 2 of 16

the distinctly different kinematical mechanisms that operate during the plastic defor-
mation of a crystal. It was formally introduced in continuum plasticity (Nemat-Nasser
1979; Simo 1988; Reina and Conti 2014), and then applied to describe the kinematics of
single crystals (Asaro 1983; Lubarda 2004; Roters et al. 2010a). A feature of this decom-
position is that it introduces an intermediate configuration between the reference and
current configurations which is obtained by unloading the crystal to a stress-free state.
The elasto-viscoplastic constitutive equations are generally written relative to this relaxed
configuration.
Many numerical procedures have been proposed to integrate the crystal constitutive

equations (Kalidindi et al. 1992; Cuitino and Ortiz 1993; Kuchnicki et al. 2006), generally
implicit and semi-implicit procedures which are developed differently by particular selec-
tion of the primary variables (stresses (Harewood and McHugh 2007), shear rates (Zikry
1994), plastic deformation gradient (Rice 1971), etc.). Polycrystal plasticity models appear
in various levels of sophistication. Along the venerable Sachs and Taylor models –in
which the aggregate deformation (Sachs 1928; Kocks 1970a) or stress (Taylor andQuinney
1932; Hutchinson 1964) is computed by averaging from the individual crystal values–,
self-consistent models have been developed and applied that express the global defor-
mation in terms of linearized viscoplastic moduli that must be adjusted self-consistently
(Lebensohn and Tomé 1993; Lebensohn et al. 2007; Acta Materialia 2012; Interna-
tional Journal of Plasticity 2013; Knezevic et al. 2014a). Models that spatially resolve
grain boundaries (GB) have started to gain traction recently thanks to a higher effi-
ciency of numerical solvers and a wider availability of computational resources. Roters
et al. have provided a comprehensive review of the different variants of such approaches
Roters et al. (2010b), which enable the calculation of the fine spatial features of strain and
stress fields, including grain shape changes and nonuniform deformation. Some of these
advances have also been discussed by Knezevic et al. (2014b).
However, in the above models, grain boundary processes –which are known to be rele-

vant at high stresses and temperatures– cannot be captured by construction. For example,
fundamental grain boundary properties such as energies and mobilities are extraneous to
spatially-resolved standard (poly)crystal plasticity models.
The aim of this paper is to present a framework that preserves the ability to model

intra-grain plasticity, while at the same time enabling a straightforward generalization
to include grain boundary processes. To this end, we develop a ‘diffuse’-interface crys-
tal plasticity model for polycrystalline materials based on a representation of grain
boundaries as a special subclass of geometrically necessary dislocations (in the sense
defined by Cermelli and Gurtin (2001, 2002)). In this model, with a single crystal
as the reference configuration, a stress-free polycrystal is constructed by imposing a
piecewise constant rotation field and its transpose as the lattice and plastic distor-
tions respectively. To make the resulting model numerically tractable, we regularize
the piecewise constant rotation field, resulting in a diffuse interface model, that pre-
serves the zero-stress character of the grain boundaries. Our main intent here is
to introduce the model and its potential, and perform a verification exercise before
launching into more ambitious undertakings where grain boundary phenomena can
be properly modeled. In the following sections we lay out the essential theoreti-
cal developments of our model and provide a verification exercise of the numerical
implementation.
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Classical crystal plasticity for single crystals
For reference, in this section, we introduce the framework of crystal plasticity for single
crystals as a starting point. A body is represented as an open subset B of the three-
dimensional Euclidean spaceR3. LetB0 ⊂ R

3 represent the reference configuration of the
body. The position of an arbitrary material point in the reference configuration is denoted
by X. A time-dependent deformation map is given by a one-to-one function y(X, t), such
that detF �= 0, where

F(X, t) := ∇y(X, t) (1)

is the gradient of the deformation map. In the theory of crystal plasticity, there exists a
decomposition of the deformation gradient given by

F = FLFP, (2)

where FL and FP are lattice1 and plastic components of F respectively, and detFP = 1. In
this paper, FP represents the deformation gradient of an infinitesimal material element,
attributed to dislocation slip through its volume. Since such a process renders the lattice
invariant, it follows that FP leaves the lattice undeformed. FL represents the deformation
of the material due to the deformation of its underlying lattice. Note that FL(X, t) and
FP(X, t) need not be gradients of a deformation map. Instead, since FL and FP are invert-
ible, they represent deformation of an infinitesimally small neighborhood of X at time t.
In other words, FPdX represents the deformation of a differential material element dX.
The collection of all deformed differential material elements is referred to as lattice con-
figuration. In this sense, FP maps the reference configuration to the lattice configuration,
and FL maps the lattice configuration to the deformed configuration.
As is customary, dislocationsmove on slip systems α = 1, 2, . . . ,A, where each α defines

a glide direction sα and a slip plane normal to mα . These two are vectors in the lattice
configurations such that

|sα| = |mα| = 1; sα · mα = 0; sα ,mα = constant. (3)

Evolution of FP is governed by slip rates vα(X, t) on individual slip systems via the flow
rule

ḞP = LPFP, (4)

where

LP(X, t) :=
∑

α=1A
vα(X, t)sα ⊗ mα . (5)

If the free energy density, denoted by ψ , depends on the lattice Lagrangian strain

E
L :=

((
FL)T FL − I

)
/2, (6)

then the evolution equations of crystal plasticity are given by the flow rule in (4), along
with the following macroscopic and microscopic force balance equations:

- Macroscopic force balance

Div P(X, t) = 0, X ∈ B0, t > 0, (7a)

u = u0 on ∂B0, (7b)
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where

P := FLψ ,EL
(
FP)−T , (8)

is the first Piola–Kirchhoff stress tensor, and ψ ,EL denotes the derivative of ψ with
respect to E

L.
- Microscopic force balance for each slip system α

bαvα(X, t) = ψ ,EL mα · CLsα , (9)

where bα ≥ 0 is the inverse of the mobility associated with the slip vα , and
CL = (

FL)T FL is the right Cauchy-Green strain tensor.

The non-negativity of the inversemobilities is a necessary condition for thermodynamic
consistency. The expression on the right-hand-side of (9) is commonly referred to as the
resolved shear stress. See the work by Gurtin for a thermodynamically consistent deriva-
tion of (7) and (9) (Gurtin 2000, 2008). In standard crystal plasticity, a stress-free single
crystal at t = 0 is modeled using the initial conditions

FP(X, 0) = FL(X, 0) ≡ I. (10)

Note that, the above initial conditions are also used for polycrystals, with the difference
that LP is evolved in a piecewise way in each grain due to the different orientation of
the slip systems, and the free energy density given by ψ

(
RT

E
LR

)
, where R is a piecewise

constant rotation field describing the initial orientation of grains.2

In the next section, we first present a diffuse-interface polycrystal plasticity model
which operates at a length scale where all grain boundaries are resolved explicitly. In con-
trast with assumption (10), the proposed framework gives us access to grain boundary
dislocation densities, thus enabling us to model grain boundary energies.

Polycrystal plasticity
Consider a sharp-interface polycrystal, i.e. one where the orientation of the lattice is con-
stant in the interior of one grain and has a jump discontinuity along the grain boundary. In
this context, crystal plasticity is studied by having the stress-free polycrystal as the refer-
ence configuration. Due to the variation in orientation of the grains, the elastic and plastic
response of each grain is different. Therefore, the elastic moduli and the slip systems
(sα and mα) are piecewise constant, with jump discontinuities along the grain bound-
aries. If the polycrystal is stress-free at t = 0, then the initial conditions are identical
to (10). Thus, within this framework, polycrystal plasticity is identical to single crys-
tal plasticity with the caveat that the elastic moduli, sα and mα are piecewise constant.
While this model is remarkably simple, it is not straightforward to generalize it to model
grain boundary-mediated deformation, such as shear-induced grain boundary motion,
grain shrinkage and rotation, grain boundary sliding, etc. These phenomena can become
important during plastic deformation at high stresses and/or temperatures, such as dur-
ing recovery, recrystallization, and grain growth. In the following section, we present an
alternate framework that lays the foundation to model polycrystal plasticity with grain
boundary evolution.
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Diffuse-interface polycrystal plasticity

The success of single crystal plasticity in describing the materials deformation lies in
precisely identifying the independent mechanisms involved, and attributing them appro-
priately to the evolution of FP. For example, the rate of change is FP due to dislocation slip
is identified with the slip rate projected on each slip system by way of the Schmid tensor.
Similarly, additional mechanisms such as dislocation climb are built into the evolution
law for FP (Weertman 1955; Thomson and Balluffi 1962). In addition to dislocations, a
grain boundary sweeping through a material also results in plastic distortion. For exam-
ple, consider a circular grain with lattice orientation θ2 embedded in a larger grain with
orientation θ1. The misorientation of |θ2 −θ1| results in a grain boundary energy. In order
minimize the internal energy, the circular grain shrinks. As the circular grain boundary
sweeps through the material, the lattice in the swept region rotates from an initial con-
figuration of θ1 to θ2, while the rest of the lattice remains unchanged. If FP is equal to
identity during this process, then this results in an incompatible F . This conclusively sug-
gests that FP �≡ I in the swept area. In other words, grain boundary motion always results
in plastic distortion.
Therefore, in the spirit of modeling plasticity due to bulk dislocations, plasticity due

to grain boundary motion may thus be modeled by identifying the mechanism for the
accompanying plastic distortion, and include it in the evolution law for FP. Identifying
the pertinent GB-mediated plastic mechanisms is highly non-trivial. For example, recent
atomistic simulations have revealed that for certain misorientations the interior grain not
only shrinks but also rotates with no dislocation activity in the bulk. This suggests that
unlike dislocation slip, there is no unique fundamental evolution law for FP that can be
attributed to the motion of a grain boundary with a given misorientation. Therefore, we
take an alternate approach to modeling plasticity due to grain boundary motion.
The central idea behind this approach is to identify dislocations as the basic defect car-

riers, and build grain boundaries as continuum aggregates of dislocations. Therefore, any
motion of grain boundary is viewed as a collective motion of dislocations that form the
boundary. The most important advantage of this approach is plastic distortion due to
grain boundary motion emerges from the original flow rule given in (4) without identi-
fying any new mechanisms. This approach can model phenomena such as shear-induced
grain boundary motion, grain boundary sliding and grain rotation (Admal and Marian
2017). We next build a framework of polycrystal plasticity based on the idea described
above.
Let R0(X) ∈ SO(3), a step function in the space of special orthogonal tensor fields,

represent the lattice rotation field in the polycrystal, with piecewise-constant values in
each grain and smooth transitions across grain boundaries. In contrast to (10), the initial
state of the polycrystal is chosen to be:

FL(X, 0) = R0(X), FP(X, 0) = R0(X)T, (11)

resulting in

F(X, 0) ≡ I. (12)

The decomposition given in (11) is the central idea of the current framework, and we
now describe its physical significance. Figure 1 demonstrates the decomposition given in
(11) for the construction of a grain boundary in a bicrystal. Recall that FP deforms the
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Fig. 1 In two-dimensions, the above construction results in exactly two non-zero components (G31 and G32)
ofG. In particular, for a symmetric tilt boundary oriented as shown above, G32 ≡ 0 when θ is a step function

material leaving the lattice fixed as shown in Fig. 1. On the other hand, FL deforms the
lattice resulting in a total deformation gradient F that is compatible. Comparing the refer-
ence and the final configurations, Fig. 1 seems contradictory since the material is shown
to be deformed although F ≡ I. We now discuss the correct mathematical interpretation
that resolves this contradiction.
We begin by noting that FP(X, 0) = R0(X)T qualifies to be a plastic distortion due to

dislocation slip, since a rotation can always be expressed as a product of three shear defor-
mation tensors (Tanaka et al. 1986; Paeth 1986; Toffoli and Quick 1997).3 Interpreting the
three resulting shear deformations as lattice-invariant shears obtained due to dislocation
slips, the rotation tensor FP(X, 0) may be interpreted as a lattice-invariant deformation.
Since an arbitrary rotation rotates the material, it may seem contradictory for it to leave
the lattice invariant (except of course when the rotation belongs to the point group of the
lattice). The correct mathematical interpretation of a “lattice-invariant” rotation is given
using the notion of weak-convergence discussed in Appendix B. In short, weak conver-
gence represents convergence of functions/distributions on the “average”. In Appendix B,
we show that, for a sequence of lattice constants ai → 0 (as i → ∞), FP(X, 0) has to
be viewed as a weak-limit of a sequence of deformations (FP)i that leave the ai-lattice
invariant. Therefore, interpreting FP(X, 0) = RT(X) and F ≡ I for a discrete lattice in an
average sense resolves the apparent contradiction described in the previous paragraph.
An important consequence of the decomposition given in (11) is that the resulting poly-

crystal is stress-free since the Lagrangian strain, defined in (6), is equal to zero. Therefore,
Eq. (11) describes a polycrystalline state which is obtained from a reference single crystal
by the right amount of slip in each grain such that grains undergo relative rotation but the
polycrystal remains stress free.
An advantage of the above construction is that we have immediate access to the

grain boundary dislocation density content in the form of the geometrically necessary
dislocation density G tensor defined as

G = FP Curl FP, (13)
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where Curl denotes the curl of a tensor field with respect to the material/reference coor-
dinate.4 For a given normal n in the lattice configuration, the vector GTn measures the
net Burgers vector of dislocation lines per unit area passing through a plane of normal n.
Using the decomposition of F discussed above, we can now, in principle, study a poly-

crystal under a single boundary-value problem. Numerically, the problem still does not
enjoy the nice characteristics of its single crystal counterpart as FL and FP are discontin-
uous. In order to overcome this challenge, we introduce a smooth-interface version of the
above sharp-interface model. This can be achieved by constructing a stress-free diffuse
interface crystal plasticity at t = 0 with FP a smoothened step function in the space of
rotation fields. This alteration ensures that all the resulting fields are smooth.

Numerical implementation
In this section, we discuss a three-dimensional numerical implementation of tensile
tests of polycrystals of varying textures using the diffuse-interface model introduced
in “Diffuse-interface polycrystal plasticity” section. The main aim of this section is to
demonstrate the robustness of the diffuse-interface model.
We implement a simpler version of a crystal plasticity model for body-centered cubic

(bcc) Fe used by Barton et al. (2013) that incorporates the role of latent hardening into the
mobility variable in (9). The microscopic force balance we use in this implementation is
given by

vα(X, t) = vα
0

(
τα

gα

)1/m
, (14)

where vα
0 the references shear rate, gα(X, t) is the slip system strength that captures the

operating hardening mechanism, τα(X, t) = ψ ,EL mα · CLsα is the resolved shear stress,
and m = 0.05 is the strain-rate sensitivity exponent. The slip strength gα depends on the
network dislocation density ρn(X, t) via Taylor hardening:

gα = g0 + bμ0
√
hnρn, (15)

where the constant g0 = 90 MPa refers to the slip strength in a single crystal, μ0 = 86
GPa is the rigidity modulus of iron, and hn = 0.125. The network dislocation density ρn in
(15) evolves according to the Kocks–Mecking type evolution model (Mecking and Kocks
1981):

ρ̇n = v
(
k1

√
ρ0ρn − k2ρn

)
, (16)

with

k2 = k20
(vk0

v

) 1
n . (17)

The variable v = ∑
α |vα| is the aggregate slip rate, ρ0 = 1012 m−2 is the reference

network bulk dislocation density, and the Kocks-Mecking parameters k1, k20, and vk0 are
equal to 450, 14 and 1010 s−1 respectively. Finally, the elastic free energy ψ is taken to be
of the form:

ψ
(
E
L) = 1

2
C E

L · EL

where C is the elasticity matrix, which for a cubic material is fully characterized by three
independent elastic constants whose values for Fe are: C11 = 228 MPa, C12 = 132 MPa,
and C44 = 116 MPa (Barton et al. 2013).
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Finite element implementation

The finite element method is used to solve the resulting system of equations in (4), (7),
and (16), with the displacement field u, the plastic distortion FP, and the bulk network
dislocation density ρn as unknowns. In particular, the three displacement variables u1, u2
and u3 are interpolated using the Lagrange quadratic finite elements, while ρn is interpo-
lated using the Lagrange linear finite elements. Recall that at t = 0, FP is a field in SO(3).
This implies that it satisfies the condition of orthogonality, i.e.

(
FP)T FP(X, 0) ≡ I. On

the other hand, the components of FP interpolated using the Lagrange finite elements
cannot satisfy the orthogonality constraint in the interior of the finite elements. There-
fore, the components of FP cannot be interpolated using the Lagrange finite elements.
Instead, using the polar decomposition, FP is expressed as RPUP, where RP(X, t) ∈ SO(3),
and UP(X, t) is the resulting positive-definite plastic stretch tensor. Using the angle-axis
representation for rotation tensors, RP is expressed in terms of a vector q ∈ R

3:

R(q) = I + sin |q|
|q| W + 1

2

[
sin(|q|/2)
(|q|/2)

]2
W 2, (18)

whereW is the skew-symmetric matrix associated with q, and |q| and q/|q| represent the
angle and axis of the rotation tensor. Lagrange linear finite element interpolation is then
chosen for the variables UP and q, from which FP is locally computed as FP = RP(q)UP.
This method guarantees that FP(X, 0) can describe an exact plastic rotation field without
numerical artifacts due to the interpolation method.
To simulate tensile tests of polycrystals with different textures, we impose the boundary

conditions shown in Fig. 2. The initial conditions for u, UP and ρn are chosen to be

u(∂B0) = 0, UP(B0) ≡ I, and ρn(B0) ≡ 20ρ0, (19)

respectively. The remaining initial conditions for q, which defines the texture of the
polycrystal, is discussed in “Construction of polycrystals with different textures” section.
The system of Eqs. (4), (7), and (16) are evolved in a segregated manner using the

MUMPS direct solver, and BDF (Backward Differential Formula) time stepping algorithm
implemented in COMSOL5.2. In particular, due to the highly nonlinear nature of (4)
expressed in q and U , we enable the “automatic highly nonlinear (Newton)” option to

Fig. 2 A schematic of the geometry of the polycrystal domain and the imposed boundary conditions. The
length of the cubic domain L = 3 micrometers, and the imposed strain rate ε̇11 = 100s−1
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obtain well-behaved solutions. On the other hand, we rely on the default “constant (New-
ton)” option for solving (7), and (16). All simulations were performed on a finite element
mesh with 99883 elements, and 595620 degrees of freedom.

Construction of polycrystals with different textures

In this section we describe the generation of diffuse interface polycrystals of different
textures. The grain orientations are outputted in the form of a smoothened rotation vector
field q(X, 0) which serves as an initial condition along with those given in (19).
A stress-free polycrystal with N grains is constructed by randomly choosing N points,

P1, . . . ,PN , within the domain, and constructing a corresponding diffuse Voronoi tes-
sellation. The grain orientations are prescribed by associating random rotation vectors
q1, . . . , qN to each grain. The diffuse tessellation is constructed using a grid of size 100 ×
100×100, and assigning each grid point to a grain based on the Voronoi construction, i.e.
a grid point pi is associated with a grain α if

dist
(
pi,Pα

)
< dist

(
pi,Pβ

)
, ∀β �= α, (20)

where dist(pi,Pβ) is the distance between pi and Pβ . Finally, the rotation vector qα is
associated to the grid point pi. The polycrystal is outputted in the form of the rotation vec-
tor field on the grid which is then interpolated as a smooth vector field q(X, 0) using the
nearest neighbor interpolation implemented in COMSOL5.2. Therefore, the texture of the
resulting collection of grains depends on the distribution of the initial collection ofN ran-
dom points, and the grain boundary “thickness” is inversely proportional to the resolution
of the grid. The pseudocode for the above algorithm is described in Algorithm 1.
We study textures with (i) a log normal distribution of grain sizes5, (ii) elongated grains,

and (iii) flat grains. The size of a grain α is defined as

size(α) = min
β

{
dist

(
Pα ,Pβ

)
: β ∈ {1, . . . ,N},β �= α

}
. (21)

Grains with a log normal distribution of sizes are generated by sampling the initial N
points from a log normal distribution based on Algorithm 1 described in Appendix A.
We use the standard Euclidean metric for dist in (20) in the generation of the texture

with log normal distribution of grain sizes. On the other hand, elongated and flat grains
with aspect ratio equal to 4 are generated by sampling the initial N points from a Dirac
probability measure supported on 0.2L, and using the metric

dist(x, y) =
(
x1 − y1

sx

)2
+

(
x2 − y2

sy

)2
+

(
x3 − y3

sz

)2
, (22)

with the scales sx = 1, sy = 1, sz = 4 for elongated grains, and sx = 0.25, sy = 0.25, and
sz = 1 for flat grains. Polycrystals with the three textures studied in this paper are shown
in Fig. 3, with the colors obtained by plotting the q3 component, indicating different
grains.

Results
In this section, we present our results of the simulated tensile tests on polycrystals of
varying textures. Figure 4 shows a color plot of the grain boundary dislocation density
for a polycrystal with log normal grain size distribution, calculated using (13). Note that
the field G is not available in the classical polycrystal plasticity implementation. In the
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Fig. 3 Polycrystals with different textures with a log normal grain size distribution with parameters σ = 0.15
and μ = − log10 5, (b) and c flat and elongated grains both with an aspect ratio of 4

proposedmodel, the initialization (11) allows to construct a kinematically consistent grain
boundary structure which evolves in time as a consequence of slip in each grain.
Figure 5 shows plots of the intermediate stress ψ ,L

E
versus the first axial component of

the total strain E := (FTF − I)/2 for different textures and loading orientations. In addi-
tion, Fig. 5 also shows the variation of the normalized dislocation density h with respect
to the total strain. We have verified that the plots shown in Fig. 5 are insensitive to further
mesh refinement. In addition, since the computed properties are aggregates, as expected,
we ensured that the results are not sensitive to grain boundary thickness. We expect that
local properties such as stress concentration will be sensitive to the choice of grain bound-
ary thickness.We also compute the Taylor factor, which is known to be 2.9 for an equiaxed
bcc random polycrystal Kocks (1970b).
The Taylor factor M is defined as the ratio of the aggregate microscopic shear rate in a

polycrystal to the macroscopic shear rate. It is defined using the following equivalence of
the power supplied by external loads to the power dissipated due to slip:

P · Ḟ =
∑

α

ταvα . (23)

Assuming there exists a constant critical resolved shear stress τ c > 0 for every slip
system at the which a crystal slips, (23) can be simplified to

P · Ḟ = τ c
∑

α

|vα|. (24)

Fig. 4 A color plot of the norm of the geometrically necessary dislocation density tensorG := FPCurlFP

expressed in units of m−1
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Fig. 5 Plots of the intermediate stressψ,EL
11
and the normalized dislocation density ρn/ρ0 versus the first axial

component of total strain E := (FTF − I)/2 for polycrystals of different textures and loading orientations

The Taylor factorM is defined as

M :=
〈
P · Ḟ
τ c|Ḟ|

〉
, (25a)

=
〈∑

α |vα|
|Ḟ|

〉
, (25b)

where we have used (24) to arrive at the last equality, and 〈·〉 denotes spatial average. The
traditional definition of the Taylor factor given in (25) cannot be used in a straightforward
manner in our implementation since the slip does not occur precisely at a critical load. In
fact, when implemented, (25a) and (25b) neither agree, nor converge with time. On the
other hand, by factoring out 〈∑α τα〉 instead of τ c in (23), we show that the following two
definitions forM given by

M :=
〈

P · Ḟ(∑
α τα

) |Ḟ|

〉
, (26a)

=
〈 ∑

α τα|vα|(∑
α τα

) |Ḟ|

〉
(26b)

are not only consistent with each other, but also converge to a constant value as shown in
Fig. 6. The converged values of the Taylor factors for different textures are listed in Table 1.

Discussion and conclusions
Most metals and alloys in usable form display an internal microstructure characterized
by a collection of grains with different lattice orientation separated by grain boundaries.

Fig. 6 Plots of the variation of the Taylor factor computed using (26) for polycrystals of different textures and
loading orientations
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Table 1 Taylor factors for polycrystals of different textures

Texture Taylor factor

log normal 3.344

Flat (axial) 3.471

Flat (non-axial) 3.293

Elongated (axial) 3.315

Elongated (transverse) 3.273

Metals deformation, particularly at high temperatures and stresses, such as during hot
working, involves not just intragranular plasticity but also plasticity controlled by grain
boundary mechanisms. Standard formulations of crystal plasticity decouple both types of
deformation, probably due to our good deal of understanding about low temperature pro-
cesses, e.g. cold working, which tends to dominate our thinking of plasticity. Indeed, this
decoupling has been the governing principle behind the development of new method-
ologies to study recrystallization in metals (Singer-Loginova and Singer 2008; Steinbach
2009; Takaki and Tomita 2010; Abrivard et al. 2012; Kamachali 2013).
However, during dynamic phenomena such as continuous dynamic recrystallization,

bulk and grain-boundary plastic processes can occur simultaneously, and therefore the
underlying plasticity model must be capable of capturing both types of deformations
concurrently. This is the motivation behind the present work: to devise a computational
model that combines bulk and grain boundary plasticity by design within the same frame-
work. Our purpose at the moment is simply to demonstrate that our formulation is
capable of rendering the same response as standard crystal plasticity models for con-
ventional problems in polycrystal plasticity. Only after fulfilling this step can we truly
apply our methodology to phenomena involving grain boundary processes. We have
undertaken this verification exercise by solving the same problem, standard Taylor hard-
ening in body-centered cubic Fe, using both methodologies, and comparing the results
obtained. To explore the capabilities of our model further, we have considered several
different textures and misorientation ranges and have calculated the associated Taylor
factors. In all cases, our results agree with those obtained using standard polycrystal
plasticity.
In summary, we have developed a diffuse-interface model for polycrystalline materials

deformation that expresses grain boundaries as a special class of geometrically necessary
dislocations, such that the stress-free nature of the polycrystalline structures obtained is
naturally recovered. We have tested the robustness of the method by simulating tensile
tests and calculating Taylor factors for polycrystals of varying textures. Our model pro-
vides a pathway from which grain boundary energies and mobilities can eventually be
obtained directly from dislocation densities, which opens the door to integrated models
of intragranular and grain boundary-governed plasticity such as recrystallization in hot
working.

Endnotes
1 In the literature, it is more common to refer to the lattice distortion as an elastic dis-

tortion using the notation FE. Since the decomposition given in (2) is purely geometric in
nature (as opposed to energetic), we prefer the term “lattice distortion” denoted by FL, a
terminology adopted by Clayton (2010).
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2 It is important to note that, within the framework of crystal plasticity, a constitutive
response function of the form ψ(RT

E
LR) with a non-constant R does not imply FL = R

and FP ≡ I as this would result in an incompatible F .
3 For example, a rotation by angle θ about the z-axis can be decomposedmultiplicatively

into three shear deformations as[
cos θ − sin θ

sin θ cos θ

]
=

[
1 − tan

(
θ
2
)

0 1

] [
1 0

sin θ 1

][
1 − tan

(
θ
2
)

0 1

]
.

4 The curl of a tensor field T is defined as

(Curl T)n := Curl (TTn),

where n is an arbitrary constant vector, and the curl on the right-hand-side of the above
equation is the curl of a vector field defined as (v)i = εijkvj,k , for any vector field v.

5 The distribution of a random variable whose logarithm is distributed normally is
called a log normal distribution. The cumulative distribution function of a log normal
random variable with parameters σ and μ is given by

�

(
ln x − μ

σ

)
, (27)

where � is the cumulative distribution function of the standard normal distribution.

Appendix A: Algorithm to generate polycrystals with different textures
In this section, we describe the algorithm used to generate the different polycrystal tex-
tures simulated in this paper. Algorithm 1 is able to generate a polycrystal with a given
cumulative distribution function f for grain sizes. In addition, grains of desired aspect
ratio can be generated using the scales sx, sy and sz as given in Algorithm 1.

Algorithm 1 Polycrystal generator with a given cumulative grain size distribution func-
tion f. The output is in the form of a rotation vector q on a predefined grid.
1: Initialize: Number of iterations maxiter, scales sx, sy, and sz, number of grains N =

1, empty array of grain centersP , and a grid.
2: for iter = 1, maxiter do
3: Select a random rotation vector q ∈ R

3, and a random point u in the domain.
4: Pick y from a uniform distribution. Let x := f −1(y). � x has the desired

distribution.
5: ifmin{dist(u,Pβ) : β ∈ {1, . . . ,N}} > x then
6: N = N + 1
7: P =[P ;u] � Append u toP
8: end if
9: end for

10: for pi ∈ {grid points} do
11: α = arg min

β∈{1,...,N}
dist(pi,Pβ)

12: Associate qα to the grid point pi.
13: end for

The variable maxiter has to be set by trial and error until a satisfactory distribution
of grain size is obtained relative to the distribution f. A very high or a low value skews the
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resulting distribution away from f. Intuitively, increasing maxiter increases the number
of tries to pack more grains such that the distribution of grain size is consistent with the
given distribution. But as the number of grains increases, the correlation between sizes
of adjacent grains increases resulting in a distribution away from the desired distribu-
tion. For example, a value of maxiter = 1000 is used to generate the texture shown in
Fig. 3. From Fig. 7, which compares the texture’s grain size distribution resulting from
Algorithm 1 to a randomly generated log normal distribution of numbers, we conclude
that the two distributions are reasonably close.

Appendix B: Interpretation of FP = RT and F = I using the notion of weak
convergence
In this section, we use the notion of weak-convergence to arrive at a physical interpreta-
tion of the decomposition given in (11), and depicted in Fig. 1 for a discrete lattice. Recall
the apparent contradiction we arrive at by interpreting FP = RT in an absolute sense for
a discrete lattice. On the one hand, FP = RT should be a lattice-invariant deformation,
while on the other hand an arbitrary rotation need not preserve the lattice. We will now
show that, for a discrete lattice, FP = RT and F = I should be viewed in an average sense
using the notion of weak convergence Rudin (2006).

Definition 1 A sequence of distributions �i converges weakly to a distribution � if

lim
i→∞ �i(φ) = �φ (28)

for all φ in the space of smooth functions with compact support, denoted by C∞
c .

Given a constant rotation R, we will now construct a sequence of deformations
(
FP)i

that converge weakly to R. Each
(
FP)i leaves a lattice with lattice constant ai unchanged,

and ai → 0 as i → ∞. In other words,
(
FP)i converges to RT on an “average” as the lattice

constant tends to zero. Assuming a square lattice,
(
FP)i (X) := ∇x̃i(X), where

x̃i(X) =
⌊
RTX
ai

⌋
ai, (29)

and �·� denotes the floor function. The deformation given by (29) ensures that the lattice
remains unchanged. Note that

(
FP)i should be viewed as a distribution since ũi is a piece-

wise constant vector field. It can be easily shown that x̃i(X) uniformly converges to RTX
as the lattice constant ai → 0. On the other hand,

(
FP)i does not converge, pointwise

Fig. 7 A comparison of the histogram plots of the probability density functions of a log-normal distribution,
and a grain size distribution resulting from Algorithm 1 with the parameter maxiter = 1000
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or uniformly, to RT. Instead, it converges weakly to RT. This can be easily demonstrated
using the divergence theorem. For an arbitrary φ ∈ C∞

c , we have

lim
i→0

∫

�

(FP)iφ dX = − lim
i→0

∫

�

x̃i ⊗ ∇φ dX

= −
∫

�

RTX ⊗ ∇φ dX

=
∫

�

RTφ dX, (30)

where we have used the divergence theorem along with φ = 0 on ∂� to arrive at the
first and last equalities, and the uniform convergence of x̃i to interchange the limit and
the integral signs in the first equality. By the definition of weak convergence, (30) implies(
FP)i → RT weakly. Assuming FL = R, it can be similarly shown that the sequence
F i := FL (

FP)i converges weakly to the identity.
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