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formulation is reduced to weakly non-local form with the help of generalized gradient
approximation of the energy and entropy functionals. On this basis, the current model
formulation is shown to be consistent with and reduce to a recent non-isothermal
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non-conservative dynamics. Finally, the current approach is applied to derive a
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Elder et al., Phys. Rev. B 75(6), 064107 (2007)).
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Introduction

Over the years, a number of approaches to the thermodynamic formulation of models for
material behavior have been developed. Perhaps the most common of these in the mod-
ern era is that of continuum thermodynamics as based on the Clausius-Duhem approach
(e.g., Silhavy 1997). Another is based on the entropy inequality of Miiller-Liu (e.g.,
Liu 1972; Miller 1985) or on extended thermodynamics (e.g., Miiller and Ruggeri 1993;
Jou et al. 2010). Yet another is based on the so-called General Equation for the Non-
Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Ottinger 1997;
Ottinger and Grmela 1997; Ottinger 2005; Grmela 2010). This latter approach is closely
related to the bracket formalism (Beris and Edwards 1994). Originally developed for
complex fluids, the GENERIC-based approach has more recently been applied to the
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formulation of thermodynamic models (Hiitter and Tervoort 2008b, c, d; Mielke 2011;
Hitter and Svendsen 2011; 2012; Hiitter and van Breemen 2012; Hiitter and Svendsen
2013; Gladkov et al. 2016; Semkiv and Hiitter 2016; Semkiv et al. 2016; Semkiv et al. 2017)
for elastic and inelastic solids. Recently, a non-isothermal phase-field model for alloy
solidification was formulated based on the bracket formalism (Bollada et al. 2017). Their
formulation is closely related to the GENERIC-based treatment of non-isothermal phase-
field models and the related temperature equation in Gladkov et al. (2016). In particular,
as in the latter case, the formulation of Bollada et al. (2017) is weakly non-local.

The purpose of the current work is to apply the GENERIC-based approach to the for-
mulation of models for the (thermo) dynamics of multicomponent, multiphase solids.
In this context, the resulting models for conservative and non-conservative dynam-
ics are inherently spatially strongly non-local (i.e., functional) and non-isothermal in
nature. The former is analogous to models formulated in the context of classical density
functional theory (CDFT), for example, phase-field crystal modeling, including elastic
and plastic deformation and multiple crystal orientations (e.g., Elder and Grant 2004;
Elder et al. 2007; Provatas and Elder 2010), as based on the free energy functional. By
analogy with CDFT, one can pursue weakly non-local approximations of the energy
and entropy functionals of the strongly non-local formulation such as local density or
generalized gradient approximations. In particular, in the context of the former, it is
shown here that the current formulation simplifies to the corresponding weakly non-
local GENERIC-based treatment of Gladkov et al. (2016). In this latter work, it was
shown that this is compatible with the non-isothermal generalization of Penrose and
Fife (1990, 1993) of the well-known models of Cahn and Hilliard (1958) and Allen and
Cahn (1979) for conservative and non-conservative phase field dynamics. Strongly non-
local dynamics is also of interest in the context of coarse-grained “slow” dislocation
dynamics in terms of ensemble-averaged dislocation densities with long-ranged Peach-
Koehler-type interactions (Kooiman et al. 2014, 2015; Zaiser 2015) or more generally for
systems with long-range interactions (Giacomin and Lebowitz 1997; Bates 2006; Hiitter
and Brader 2009).

For completeness, it is worth noting that other thermodynamic frameworks could
be, and have been, employed for the formulation of non-local dynamics. For exam-
ple, the bracket formalism (Beris and Edwards 1994) has been employed to this end in
Bollada et al. (2017). A detailed comparison between the single-generator bracket formal-
ism and the double-generator formalism GENERIC has been performed in general terms
(Edwards 1998; Edwards et al. 1998). It has been found that the GENERIC is more flex-
ible and has several advantages over the bracket formalism (see p. 19 in Ottinger 2005;
Edwards et al. 1998). Therefore, the GENERIC framework is used in this paper.

The paper begins with a brief summary of the GENERIC in the “Brief review of the
GENERIC” section. This is followed by the strongly non-local GENERIC-based model
formulation in the “Strongly non-local model formulation” section. Connection is made
with the existing weakly non-local model formulation of Gladkov et al. (2016) in the
“Special case: weakly non-local model formulation” section. Finally, the current approach
is applied to derive a non-isothermal generalization of a phase-field crystal model for
binary alloys in the “Non-isothermal generalization of a phase-field crystal model for
binary alloys” section. The paper ends with a summary and discussion (the “Summary
and discussion” section).
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In all relations to follow, all operators, such as V, V- = div, £, and M, operate on
everything to their right (unless otherwise indicated). Position arguments r, r/, etc. are
given explicitly where required for clarity, but omitted otherwise.

Brief review of the GENERIC

As discussed in the introduction, the current framework for non-local thermodynamics
is based on the GENERIC (for closed systems: Grmela and Ottinger 1997; Ottinger and
Grmela 1997; Ottinger 2005)

XZX'rev"‘*'irr’ X| :‘CDXE’ X'irr:MDXS’ (1)

rev

for the reversible (rev) and irreversible (irr) evolution of thermodynamic state variables x.
As indicated, this evolution is driven by the gradients D, E and D, S of total energy E[ x]
and entropy S[x], respectively, mediated by Poisson £ and “friction” M operators.

Certain conditions apply to the operators £ and M. With respect to the “scalar” product
(DA, D,B), and (D, B, OTD,A) := (D,A, O D,B) defining the operator transpose, one
can introduce the brackets

{A,B} := (D,A,LDB), [A B]:= (DA MDB). (2)
In these terms, the conditions on the Poisson operator £ can be written in the form
{B,A} = —{A, B},
{4,5}=0, ®3)
{4,{B,C}} +{B,{C, A}} + {C,{A,B}} = 0,

with A, B, and C arbitrary functionals. In particular, the last condition is the Jacobi
identity, reflecting the time-structure invariance of the reversible dynamics. The skew-

symmetry (3); and orthogonality (3); conditions can also be written as LT = —£ and
LD,S = 0, respectively. Using the bracket (2), the conditions for the friction operator
M are

[B,A]=[A4,B],

[A,E]=0, (4)

[A,A]>0,

with A and B arbitrary functionals. The symmetry (4); and orthogonality (4)2 conditions
can also be written as MT = M (Onsager-symmetry) and M D,E = 0, respectively.
For the specific case of Casimir, rather than Onsager, symmetry, the reader is referred to
Ottinger (2005) for more details.

Based on (1) and (2),

A = (D,A,X) = (DA, LDE) + (DA, MD,S) = {A, E}+[A,S] (5)

determines the evolution of an observable A[ x]. For the specific case of the total energy,
A = E, one obtains by virtue of (3); and (4)2

E ={E,E}+[ES]=0, (6)
i.e., the total energy is conserved. Conversely, for A = S, (3)2 and (4)3 imply

S =1{S,E}+[S,S]=[S,S] > 0, (7)
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i.e., the entropy is non-decreasing. While conclusions (6) and (7) are definitely meeting
the expectations for closed systems, it must be pointed out that the sets of conditions (3)
and (4) are much richer than the two scalar conditions (6) and (7). These are employed
for model development, as illustrated in the following section.

For more background and details concerning the GENERIC, the interested reader is
referred to Grmela and Ottinger (1997); Ottinger and Grmela (1997); Ottinger (2005).

Strongly non-local model formulation

Basic considerations

The GENERIC-based relations summarized in the previous section are abstract and
intrinsic in nature. The purpose of this section is to obtain specific forms of these relations
relevant to the modeling of the non-local dynamics of multicomponent and multiphase
solid systems. In this work, attention is focused on (strong) spatial non-locality (i.e., in the
sense of classic density functional theory) alone; temporal non-locality’ is not considered.
Strong spatial non-locality of (1) is modeled in this work via the form?

GDA(r) = / G(r,r) DA dv(r'y =: G x D,A(r) (8)

for the action of G (i.e., L or M) on D, A (i.e., A = E or A = §) in terms of a corresponding
(distribution-function-like) “kernel” operator G (r, ). In turn,

(D,A,GD,B) = /DXA -G+*DBdv= / DA -GD,Bdv av 9)

then holds via (75) for the bilinear operator relations on the right-hand side (r.h.s.) of
the Poisson and dissipation brackets (2). In the remainder of this paper, D, A denotes the
functional derivative3 of A.

The strongly non-local formulation studied in this paper, (8) and (9), is a realization
of the GENERIC (Grmela and Ottinger 1997; Ottinger and Grmela 1997), involving gen-
eralized contractions, i.e., summations over both discrete and continuous indices, the
latter leading to integrations (see Section 2.2.2 in Ottinger 2005). It has been shown that
systematic coarse-graining using non-equilibrium statistical mechanics, which has been
employed to derive the GENERIC in general (see Chapter 6 in Ottinger 2005), results in
non-local expressions for the Poisson and friction operators (see Section 5 in Hiitter and
Tervoort 2008a). For the special case that the entries in the Poisson and friction operators
can be expressed in terms of the Dirac delta function, the strongly non-local formulation
reduces to its local counterpart (see Section 2.2.2 in Ottinger 2005; Section 5 in Hiitter
and Tervoort 2008a).

Given these basic relations for the functional-based formulation of the GENERIC, (8)
and (9), we are now in a position to apply these to the case of multicomponent, multiphase
solid systems.

GENERIC variables and basic functionals

The strongly non-local form of the GENERIC formulated in the last section is now applied
to the formulation of a model for a non-isothermal, heat-conducting mixture of dis-
placively transforming thermoelastic solid phases and diffusing chemical constituents.
Basic mixture fields include the mass density p, the deformation x = (x;, x5, x3), the
velocity v = (v, vy, v3), the momentum density m = p v = (m,, m,, m;), and a “thermal”
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variable ¢ chosen in what follows in order to obtain the simplest possible formulation.
Lastly, ¢ = (¢y,..., gop) represents an array of p scalar phase fields of both conservative
and non-conservative type. These will be specified in more detail later. On this basis,

xS = X,m, g,9) = (Xlr X2 X3) M1, Mo, M3, § P15+ -+ </)p) (10)
represents the complete set of GENERIC-based variables for the current constitutive
class. All these fields are referential or Lagrangian with respect to the mixture. In this

case, mixture mass conservation implies ¢ = 0 and v = x holds. In the context of (10),

then, E[ x¢] and S[ x°] take the forms
E[xg]:/e[xg] dv, e[x°]= %+e[x§] S[xg]:/n[xg] dv (11)
) 2 ) )

respectively, in terms of the corresponding densities of internal energy ¢ and of entropy
n. Like E and S, ¢ and n are in general functionals of the “components” (10) of x¢, the only
exception to this being that both ¢ and 1 do not depend of the momentum density m.

Poisson operator and reversible dynamics
As shown elsewhere (e.g., Ottinger 2005), the choice

s=1 (12)
results in the simplest possible formulation of reversible dynamics (1),. Then*

DwE = (DyE,D,,E, D)E,D,E) = (DyE,m/p,0,D,E),

DS = (S D,S, DS, D,S = (0,0,1,0),

(13)

follow from (11) and the fact that 5 is in the set of independent variables. In particular,
note that

DyS = /Dn(r)n(r') av(r') = /8(7’ —rYydvr)=1 (14)
follows from (11), and

0(r) := D, E = / D, e (r) dv(r’) (15)

has units® of temperature.
In the context of (8), the current model for strongly non-local reversible dynamics (1)
takes the form

X oy(r) = LDGE (r) = / L(r,7) Do E dv(r') = L x D,,E (r), (16)

with £, and so L, subject to the conditions (3). Since the evolution of the phase field ¢
is due only to irreversible processes like transport and relaxation, the dynamics of these
fields is purely irreversible (i.e., in the current Lagrangian or referential setting). In this
case, the only variables with non-vanishing reversible dynamics are x, m, and ¢ = 1. The
first two have been treated in (Hiitter and Svendsen 2011; 2012) for the purely local and
weakly non-local cases. Generalizing their approach to the current context, L in (16) takes

the form
Lxx Lxm an Lx<p 0 6I 0 O
L _ me me Lmr] Lm¢ — _(SI 0 Lmn 0 ) (17)
Lnx an er LW 0 L""’ 00
I I L I 0 0 00
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In this case, the upper-left block of L(r,#’) is determined in particular by the three-
dimensional delta function §(r — #’) and I the second-order identity tensor. Given (17),
(16) reduces to

Xlrey = Ly * DyE =m/p,

#lyey = Ly * DyE+ Ly, * D)E = =DyE+ L, %0, 8)
Nlrey = Lym * DyE =Lyy*X>

Plrey = 0,

via (13);. Furthermore, using (13)2, the only non-trivial contribution to the orthogonality
condition (3)y, in the form 0 = LD, ;S (r) = L * D, S (r), is given by

0=1L,, *D,Sr = /Lmn(r, r) dv(r) (19)
via (14). This condition is solved by
Lyy=0, Ly, =-L =0, (20)

where in the second equality the skew-symmetry condition (3); has been employed.
Given these results, (18) reduce to
ey =m/p, 1l = _DXE’ Niey =0, @ley =0, (21)

for reversible dynamics. The expected form (21)3 for the reversible dynamics of the
entropy density 1 serves in hindsight as a justification of the choice (20). In order to com-
plete the formulation of the reversible dynamics, it can be shown by a straightforward
calculation that the Poisson operator (17) with (20) satisfies the Jacobi identity (3)3.

Friction operator and irreversible dynamics
For irreversible dynamics (1)s, the choice
c=¢ (22)
results in the simplest formulation, and so the complete set of variables is denoted by x°.
In this case,
D..E = (D,E,D,,E, D,E,D,E) = (0,m/p,1,0),
D,.S = (D,S,D,S DS D,S) = (D,S,0,9,D,5),

(23)

is obtained from (11), since the internal energy density ¢ is in the set of variables. Here,

D,»E = /Dg(r)s(r’) av(r) = /S(r —rdvir)=1, (24)

analogous to (14), and

9(r) :=D,,)S = /Dg(r)n(r/) av(r) (25)

has units of inverse temperature or “coldness”
Analogous to (16) in the reversible case, the model relation

Xy (1) = M D, S (r) = / M(#, 1) Dye (S dv(r') = M 5 Dy S (1) (26)

is assumed for (1)3 in the context of (8) together with the choice (22) for ¢. For the

current class of materials, x|, from (1)3 is assumed to be influenced in general by (irre-

irr

versible, diffusive) mass, momentum and energy (heat) transport, chemical reactions, and
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(micro)structural rearrangement (e.g., phase transformation). For simplicity, the follow-
ing treatment is restricted to thermoelastic phases, and irreversible momentum transport
is neglected. In this case, there is no irreversible contribution to momentum evolution.
Since the kinematic relation (21); is not affected by irreversible processes, this together
with (1) implies that the x and m rows of M vanish identically. On this basis, the reduced

form
My My My, My, 00 O 0
M — Moy Moy Myye My _ 00 O 0 @)
Max Msm Msa Msga 00 Msa Ms¢
Myy Mom Mye My, 00 My, My,

for M follows, where the symmetry (4); of the friction operator has been employed. We

then have the following non-trivial contributions

Elir = My, * DS+ M,, xD,S,
Olir = M(pg * DES‘FM(M, * D(/,S,

(28)

to the evolution equations from (26). Furthermore, using (23);, the only non-trivial con-
tributions to the orthogonality condition (4)2, in the form 0 = M D,.E (r) = MxD,.E (r),

are given by

0=M,,*DE(r) = /Msg(r, r) dv(r),
(29)
0 =M, *D.E(r) =fM¢£(r,r’) dv(r'y,

via (24). It is clear that the choices M,, = 0 and My, = 0 are physically not meaningful,
since the symmetry condition (4); would imply Mw = 0, and therefore, &|i;; = 0 accord-
ing to (28)1, which is incompatible with heat conduction. This is discussed in more detail

in the sequel.

Decomposition of the friction operator
A refined model formulation is obtained with the help of the multiplicative decomposi-

tion

M(r,v) = // Cr,/ YD, ¥ CY&", ¥y dv(r’) dv(r"),
(30)

=CxDxC(r,1r),

(e.g., Edwards 1998; Ottinger 2005) relating the flux-force-based kinetic coefficients D
(material properties) to the friction operator M in terms of the operator C and its adjoint
CT. Given (30), (26) takes the split form

=Cxj, j:=Dxf, f:=ClxD.S, (31)

. €
X |irr
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in terms of thermodynamic forces f and fluxes j. As well, (30) induces the form

S=/DXSS~XSdV=‘/DX55~C*D*CT*DX556{V
= / (CT%D.S) D (CT % D,eS) dv (32)

:/f~D*fdv

of the entropy production-rate via (7), which is in general quasi-quadratic in f (i.e., D may
in general depend on f). The symmetry and non-negative definiteness of D, i.e.,

DT =D, /f-D*fdv>0, (33)
respectively, induce the analogous restrictions

Mt =m, fDX£A~M*DXgAdv >0, (34)
on M via (30), and so those (4)1,3 on M. As well, the orthogonality condition (4)2 becomes

MDLE=CxD*CY«D.E=0, (35)
which is satisfied identically if

C'«D.E=0. (36)

Experience with the structure of numerous non-equilibrium thermodynamics models
has shown that, in addition to the roles of C in (31)3 and (31);, the condition (36) is useful
for determination of the operator C (e.g., Edwards 1998). In the context of (8) and (30),
the conditions implied by (4) on the friction operator M are satisfied mathematically if
(i) D is symmetric and non-negative-definite and (i) C" is orthogonal to D,:E,i.e., (36).
Any physical choice for the “components” of M must satisfy these.

The remainder of the formulation is based on the split ¢ = (9, ¢) of ¢ into m conser-

vative @ = (0y,--.,0,,) and s non-conservative ¢ = (¢;,...,¢,) parts, withp = m +s.
To determine the elements of C, we aim in particular at X |,,, = 0 and 7|, = 0 (see
argument above). In the context of (31);, then, C reduces to

C=|Cy, Coj, Coj, | - (37)

Coj. Coj, Caiy

| Coi. Coj, Coij,

For the further specification of the elements of C, it is noted that the split (30) of M is
not unique, even when using the conditions on C and D mentioned above. Nevertheless,
the split (30) can be used if the operator C is determined by a more specific interpre-
tation of the fluxes j, as explained in the following. With the interpretation that j, and
jg are diffusive fluxes (i.e., heat and mass, respectively), whereas j¢ is a (generally non-
conservative) “displacive” flux related to structural rearrangement, —V -j,, =V - j,, and j¢,
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respectively, are the corresponding contributions to irreversible® dynamics. From these,

follow
ngs(r,r”) = -Vs(r—r"),
ngg (r,r") = =V8(r—1r"H1, (38)
C¢j¢(r,r”) =8(r—1r"I,

for the “diagonal” components of C. As before, § is the three-dimensional Dirac delta func-
tion. Here and in what follows, V is the gradient operator with respect to r, V’ that with
respect to 7/, and so on. The non-square structure of C follows from the fact that (31);
transforms three thermodynamic fluxes j,, j,, and j¢ into five relations for the irreversible
dynamics of x, m, ¢, 9, and ¢.

While the components (38) of C contain negative derivatives of the Dirac delta function
with respect to the first position argument of C, in turn, the components of CT must
contain negative derivatives with respect to the second position argument of CT. This

leads to
C;l; (I’W, r/) — _V/(S(r/// _ r/) ,
ngg (r///’ 1”/) — _v/a(r/// _ l"/) I, (39)

ng(b (r///’ r/) — 5(',/// _ r/) I,
for the components of CT related to (38). Further elements in (37) are constrained by the
orthogonality condition (36). In particular,
0=Cj *xDEW") = — [Vs(" 1) dv(r'),
0= cgjg *DE(") = [ C;Fjg ", r)dv(r'), (40)
—_ T _ T
0= C% *DE®F") = fC%(r”’, r)dv(r'),

follow from (23); and (39);. Clearly, (40); is identically fulfilled. Sufficient for satisfaction
of the other two are

C. =0, C.=0, (41)

which we work with in what follows. The remaining elements in (37) can be determined
by the physical assumptions that there are no other contributions to the irreversible
dynamics of ¢ and ¢ than —V - jg and j¢, respectively, i.e.,

CQfg =0, ng¢ =0, C¢i5 =0, C¢jg =0. (42)

These physical assumptions, together with (38), imply

0 0 0
0 0 0
Crr'y=| -Vé(r—r") 0 0 , (43)
0 —Vé(r—r")1 0
i 0 0 S(r—r")1 |

and the irreversible contributions (31); to the evolution equations become

Xlirr =0, rh'irr =0, é'irr ==V 'js ’ é'irr ==V '-iQ ’ d"irr =j¢ ! (44)
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Calculating the operator adjoint to C given by (43), using (39),

00 —V'§@" —r) 0 0
cTa”,y=|00 0 —V'§@" — 1)1 0 , (45)
00 0 0 S —r)1

the thermodynamic forces f = (f, f,, fy) given by (31)3 for irreversible dynamics take the
form

f.=VD.S=V0, f,=VD,S, fy="DyS. (46)

To complete the thermodynamic modeling of the irreversible dynamics (44) with ther-
modynamic forces (46), one requires a constitutive relation between the thermodynamic
forces f and fluxes j, i.e., a realization of (31);. If the corresponding (in general non-
diagonal and non-local) operator D is symmetric and non-negative definite according to
(33), then all GENERIC conditions (4) are respected, since the orthogonality condition
(4)2 has been taken care of via (41).

Complete model: combination of reversible and irreversible dynamics

The formulations of the reversible (the “Poisson operator and reversible dynamics”
section) and irreversible (the “Friction operator and irreversible dynamics” and “Decom-
position of the friction operator” sections) dynamics did not make use of the same
set of variables. This has been done for reasons of keeping the application of the
GENERIC framework transparent. However, this discrepancy in the sets of variables, x"
and x°, comes at the cost of additional work required to formulate the composed model,
combining the reversible and irreversible dynamics. This is the topic of this section.

Combining (21) and (44), one obtains for the dynamics

X:m/p, i’h:—'DXE[X']], é:_v'jgr ¢:J¢’ (4'7)
where the thermodynamic fluxes j are related to the thermodynamic forces
f.=V?, fo = VD,S[x], fo = DypSIX°], (48)

from (46) via the non-local flux-force relation (31),. The notation (see Footnote 4 above)
Dxi,,E [x"] and DX;.S [x?] for partial functional derivatives emphasizes the fact that different
sets of arguments (i.e., x"7 and x*) are involved and being held fixed.

To make this model usable for an arbitrary choice of the thermal variable ¢, two steps
need to be taken. To simplify notation in relation to the transformation of variables,
the following abbreviations are introduced, as an amendment to the operator-related

notation (8),

% (D b)” (1) : f a(r) (D b)) v,
(49)

<DX,‘ b)“ xa(r) .= / (Dxi(r)b(l‘/)>a a(¥) dv(r'),

for arbitrary function(al)s @ and b with & = =+1. For the first step in transforming the
dynamic model to the set of variables x¢, it is useful to employ the following identities,
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via the chain rule for functional differentiation (e.g., Engel and Dreizler 2011, (A.38)),
D, E[x"] = D E[x<] - (Dxn[xg]) %0,
D,SIx°] = D,S[x¢] — (Dpelx1 ) %9, (50)
D,S[x°] = D,S[x] - (D¢8[x5]> «0,

with 6 from (15), ¥ from (25), and now

6 = D,E[x"] = (D.E[x5]) * (Don[xs]) ",

-1 (51)
9 = D.SIx] = (D.S[x5]) * (Doelxs]) ™" .

Here, the notation (Dg(r,)a[xg] )l = Da(r) ¢[x?] (') has been used for ¢ = 5 and
a = ¢. For the second step in transforming the dynamic model to the set of variables
x¢, the dynamics (21)3 and (44)3 are combined to obtain an evolution equation for the

thermal variable ¢. In particular, one can show that
S:|1‘ev * Dgn[xg] = _X * DXU[Xg] ’

. ., o . S (52)
Eli # Dot XS] = =V oo + 3 (Vg ) # Dy el x5 = Y Jy # Dy el x] .

k=1 =1
Using the chain rule Dgs[ x5 = D_n [x¢] *D,,a[ xT], the two equations in (52) combine to
yield

¢ D.s[x5] = (—x *Dxn[xs]) % Dye[ x7]

. . S, . (53)
V., + gl (v .Jgk) « D, e[ x] — £J¢l # Dy el x5]
with the reversible and irreversible contributions on the first and second lines on the r.h.s.,
respectively. For the particular choice ¢ = 7, the reversible contributions vanish, in agree-
ment with (21)3. Alternatively, for the special choice ¢ = ¢, the irreversible contribution
reduces to (44)s. Yet another choice for ¢ will be discussed in the following section, when
reducing the above model to the the weakly non-local case.

Note that the left-hand side (Lh.s.) of the evolution equation (53) is not a simple time
derivative but rather involves in general a spatial integration (convolution). In order to
solve this evolution equation, one of the following two alternatives can be used. On the
one hand, one can see the functional derivative Dge[ x5] on the Lh.s. of (53) as an operator.
If its inverse exists, the operator inverse can be applied to both sides of (53), which will
lead to an explicit equation for the change in the thermal variable, ¢. More generally,
forward-Euler numerical time integration of both sides of (53) yields a coupled functional
relation between the current temperature and deformation fields. Given the latter from
forward-Euler-based solution of (47)1,, (53) can be solved in fixed-point fashion for the
current temperature.

Note that the driving forces (50) for the reversible and irreversible dynamics can
be simplified, if the quantities 6 and ¢ in (51), respectively, satisfy certain conditions.

Specifically,
DXG[xg] =0, = DXE[X”] = DXlI/[xg] ,
DXl =0, =  DS[x]=D¥[x], (54)

D,o[x€] = 0, = D,S[x‘] = D¢lf/[x§] ,
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in terms of the Helmholtz free energy ¥ with density v, and the free entropy ¥, also
known as the Massieu function, with density lﬁ, defined as

Y = [Ydv,withy:=¢—0n,

. . . (55)
Y = [Ydv, with ¢y :=n—190e¢.

The conclusion that the reversible and irreversible dynamics are driven by the derivatives
of the Helmholtz free energy and free entropy, respectively, is in agreement with earlier
observations (Mielke 2011). As special cases of (54), one observes that the condition in
(54)1 is trivially satisfied if O] x°] depends only on ¢, while the conditions in (54),3 are
trivially satisfied if ¥'[ x¢] depends only on g.

In summary, the main result of this paper is a non-isothermal strongly non-local model
formulation for the dynamics of the GENERIC variables (10), including a split of the phase
fields into conservative and non-conservative parts, as discussed in the “Decomposition
of the friction operator” section. The complete model is given by the evolution Egs. (47)
and (53) together with the forces (48) and force-flux relations (31), for an arbitrary ther-
mal variable ¢, where the relevant functional derivatives are to be calculated with the help
of (50) and (51).

Special case: weakly non-local model formulation

Analogous to the case of classical density functional theory (CDFT), consider now the
approximation of the above strongly non-local formulation by a weakly non-local one. As
in the case of CDFT, this is based in particular on the approximation

e[x ]~ e(x*), nlx°]~n(x*), (56)
of the internal energy and entropy density functionals in (11) by functions of

X =(Vx,5,0, Ve, 9, V9) . (57)

More specifically, in the language of CDFT, this is analogous to the generalized gradient
approximation (GGA). Further neglect of the dependence on Vg and V¢ would result in
the so-called local density approximation (LDA).

For any functional A (e.g., total energy E or entropy S) of the form

Alx] = /a(x, VX) dv, (58)

with the density a being a (local) function of the variables x and their spatial gradients
Vx, the partial functional derivative of A assumes the form

D,A=0,a—V dy.a=da, (59)

in terms of the (first-order) partial variational derivative 8, a of its density. The first
equality in (59) can be used to derive

Dyn@t") = (8@ ) 86— 1) = V- [ (dgya)) 8= 1] (60)

by applying (59) to the functional a(r’) = [a@r”") (" — ') dv(r"). Both (59) and (60)
will be used repeatedly in this section when reducing the model of the “Complete model:
combination of reversible and irreversible dynamics” section to the weakly non-local case.



Hutter and Svendsen Materials Theory (2017) 1:2 Page 13 of 20

Choosing now ¢ = 6 as the thermal variable in (56), one obtains

_ g €(X (1))
D_E[x5]) * (D.n[x5]) "' () = f O T S — ) dv(r)
( S ) ( gn ) ae(r/)n(xﬂ(r/))
(61)
d,e(x%)
== .
dgn(x7)
Comparing this with (51);, one sees that (56) with ¢ = 6 and this latter relation agree
when
9 S0
= 22 (62)
9gn(x¥)

holds. Note that this condition is automatically satisfied if both ¢ and 7 are derived from
a Helmholtz free energy density ¥, (55)1, with n = —dp ¥ (x?). In the sequel, it is assumed
that ¢ and 7 indeed do originate from a Helmholtz free energy density ¥ in the way just
mentioned, i.e., that the consistency relation (62) is satisfied, and 6 will be referred to as
the absolute temperature in the sequel.

In the following, all model components summarized in the “Complete model: combina-
tion of reversible and irreversible dynamics” section are reduced to the weakly non-local
case. While (51); for the absolute temperature 6 has already been dealt with above (in
terms of (62)), one obtains for the coldness (51),, with a calculation analogous to (61),

9 =071, (63)

i.e., the coldness is the inverse of the absolute temperature. Furthermore, with the help of
(59), one obtains for the functional derivatives (50)

DE[X"] = 8y ¢ (X7) = =V - dvy v (X7) ,
D,S[x°] = 8,7 (X%), (64)
D,S[x] = 8¢9 (X7)

which is a realization of (54) with the densities of the Helmholtz free energy and the
free entropy defined in (55). Using these reduced forms for the functional derivatives, the
evolution equations specified in (47) are modified in terms of the reduced momentum
balance for the weakly non-local case,

st = —D,E[X"]=V - dy, ¥ (X%) . (65)

The term in brackets is naturally identified as the stress tensor that agrees with ear-
lier results (Hiitter and Svendsen 2011; Gladkov et al. 2016). The driving forces for the
irreversible dynamics, (48), assume the form

o=V, f=V8U (X), =549 (%), (66)

in agreement with the non-isothermal weakly non-local formulation developed in
Gladkov et al. (2016). As evidenced by (65) and (66), the reversible dynamics and irre-
versible dynamics are driven by derivatives of the Helmholtz free energy density ¥ and
derivatives of the free entropy density v, respectively (Mielke 2011).
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Finally, according to (53), the evolution equation for the absolute temperature 6 is
given by

(30e(X%)) 6 = (V) : dvy (=On(X)

—V.j.+ kz (dgkg(’?e)) © (V 'ij) - IZ (d¢lg()?9)) © Jgy »
=1 =1
where we have used d,e(X7) = 6, which follows from (62). Furthermore, the operator

notation,
(dsa) o b= (0,a) b+ (dy.a) - Vb, (68)

has been introduced in terms of scalar s and b. The temperature evolution (67) is in com-
plete agreement with the weakly non-local formulation developed in Gladkov et al. (2016).

Furthermore, (67) includes the irreversible contributions to the temperature evolution
equation derived in Bollada et al. (2017) (see Eq. (111) therein), which is based on the
bracket formalism (Beris and Edwards 1994).

Non-isothermal generalization of a phase-field crystal model for binary alloys
As a second example application of the current model formulation summarized in the
“Complete model: combination of reversible and irreversible dynamics” section, the
phase-field crystal (PFC) model for binary alloys from Elder et al. (2007) is generalized to
non-isothermal conditions. Since deformation x, momentum 2, and non-conservative
phase fields ¢ play no role in this model, they are neglected here. In this case, the
reduced set

Xppc = (,04,0B) (69)
of GENERIC variables and corresponding evolution relations
o4 =~V
o = =V g, (70)
¢ * Dgs[xg] =-V.j + (V ~jQA> * DQAe[xg] + (V JQB) * DQBs[xg] ,
from (47) and (53), respectively, are relevant. Here, 04 and op represent the (number) den-
sities of alloy species A and B, respectively. Consistent with the model formulation in Elder

etal. (2007) based on a free energy functional, the current non-isothermal formulation is
based on the choice

c=T (71)
in (69), adopting now the notation T for the absolute temperature. Likewise, the forms
e [grc] = —7 {804 (I'fy *60a) + b0 (I'fy * dos) + 2804 (Ify * den)}
n[xgc] = —ks {oaIn(oa/oae) — S04 + orIn(os/ose) — SoB) (72)
3 {804 (4 *804) + 8os (Isp * S08) + 2804 (I'js*en)}
for the internal energy, and entropy, density functionals, respectively, represent direct

generalizations of the free energy density functional in Eq. (15) of Elder et al. (2007).

Here, kg is the Boltzmann constant, and ox = 0k — 0k, Where o, denotes the lig-

uidus density of the respective phase (Elder et al. 2007). In (72), Flfkl,s = F]i‘,s(r, r)

represent energetic and entropic two-point correlation kernels. For the special case
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that T is constant in space and time, i.e., the case usually considered in phase-field
crystal modeling, one recovers with [(e — Tn)dv the free energy used in Elder et al.
(2007), with (Fki, — TF,g(,) /(kgT) equal to the two-point correlation kernels CkK of
Elder et al. (2007).

Note that the dependence of the internal energy and entropy density functionals in (72)
on T is contained in the correlation kernels F]i‘,s. Once that dependence is known, the
heat capacity (kernel) on the Lh.s. of (70), and particularly the driving forces (48)1,2, using
(50)2 and (51), can be calculated. For the special case that the T-dependence in (72) is
such that ® = 1/T by way of (51)9, the simplified relation (54)> can be used for the driving
forces, in terms of the free entropy.

The non-isothermal extension of phase-field crystal modeling is completed by specify-
ing the relation between the fluxes j, and j, on the one hand and the forces f, and f, on
the other hand. For example, one may choose D in (31); to be diagonal, which includes
the diffusive dynamics studied in Elder et al. (2007) for the densities o4 and gp.

Summary and discussion

In this paper, the GENERIC approach (Grmela and Ottinger 1997; Ottinger and Grmela
1997; Ottinger 2005) has been used to formulate a class of spatially strongly non-local
and non-isothermal thermodynamic models for multiphase, multicomponent solids, with
conservative and non-conservative dynamics. Particularly, phase transitions as well as
mass and heat transport can be described with these models. For the model formu-
lation, the reversible and irreversible dynamics have been distinguished carefully. For
the present class of models, the reversible dynamics is of a purely kinematic origin,
supplemented by the key ingredient that the referential entropy density is constant in
reversible dynamics. With respect to the formulation of the irreversible dynamics, the
operator split (30) was employed in order to relate to the constitutive model formula-
tion in terms of thermodynamic forces and fluxes (Edwards 1998). As shown in the last
part of the work, the current strongly non-local model formulation reduces consistently
to the weakly non-local one of Gladkov et al. (2016). As shown in that work, the weakly
non-local model formulation is a direct non-isothermal generalization of the well-known
phase-field models of Cahn and Hilliard (1958) for conservative dynamics and of Allen
and Cahn (1979) for non-conservative dynamics in the spirit of Penrose and Fife (e.g.,
Penrose and Fife 1990, 1993). As well, the application of the current GENERIC-based
approach to the non-isothermal generalization of a phase-field crystal model for binary
alloys from Elder et al. (2007) demonstrates its potential as a framework for the formula-
tion of strongly non-local models for long-range dynamics in chemically and structurally
inhomogeneous materials and systems.

In view of the goal of formulating models that are spatially strongly non-local in nature,
the weakly non-local relation (the “Decomposition of the friction operator” section)
between the thermodynamic fluxes (j, and j,) and the corresponding irreversible dynam-
ics (of ¢ and @) may seem inappropriate. Since both ¢ and the components of g are
densities of conserved quantities, however, the weakly non-local ansatzes are justified
if the corresponding densities at a certain position evolve by virtue of exchange with
the immediate neighborhood. This gives rise to the spatial gradient operator V in the
model formulation. The following two generalizations of this ansatz can be incorpo-
rated in a straightforward manner in the treatment presented in this paper. The first
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generalization concerns the exchange of internal energy over (finite) distance, ie., by
radiation and absorption, making a weakly non-local ansatz inappropriate. This could be
incorporated by including in the friction matrix element M,, a strongly non-local con-
tribution that satisfies the condition (29); for the conservation of energy, with M,, being
strongly non-local in the sense of not making use of any spatial derivative operator. The
second generalization of the weakly non-local ansatz concerns the account of chemical
reactions of the components of g (e.g., Bazant 2013). While the thermodynamic potential
generating the dynamics (in our case S[ x°]) can be of a strongly non-local character, the
relation between the derivatives of the thermodynamic potential (DQS [ x?]) and the rate
of change of the species g is usually assumed to be a local one. In this sense, the reader is
referred to Ottinger and Grmela (1997) for the implementation of chemical reactions as
an amendment to the model formulation in this paper.

The isothermal special case of the current GENERIC-based formulation is in some ways
reminiscent of phase-field crystal (e.g., Elder and Grant 2004; Elder et al. 2007; Provatas
and Elder 2010), which itself is based on the classic density functional theory (of freezing).
In particular, all of these are based on spatial strong non-locality. Also relevant to the
modeling of complex multiscale dynamics in general is temporal non-locality. This leads
to models that use a memory kernel that does not decay infinitesimally rapidly. In many
cases, e.g., in modeling the rheology of complex fluids, it has been found that the memory
kernels can be avoided by including additional, microstructural dynamic variables in the
description (Bird et al. 1987a, b). However, problems can arise if appropriate auxiliary
dynamic variables can not be found or if the system does not obey a clear separation of
characteristic time scales (e.g., Ottinger 2005, Chapter 6), i.e., if a clear separation into
“slow” and “fast” dynamics is not possible. In these cases, explicit temporally truly non-
local model formulations seem unavoidable. This is a topic beyond the scope of this paper
and is therefore left as a subject to further research.

Endnotes

! Account of such non-locality in coarse-grained form is possible for example with the
help of projection-operator methods (e.g., Ottinger 2005, Chapter 6), something well-
beyond the scope of the current work.

2 For notational simplicity, the time argument in x(r, ¢) is suppressed in the notation in
what follows.

3 A number of concepts from the theory of functionals and their derivatives (see, e.g.,
Parr and Yang 1989; Davis 1996; Engel and Dreizler 2011 for more details) required for
this purpose are briefly summarized in Appendix A: brief summary of concepts from the
theory of functionals and illustrated in Appendix B: functional derivatives based on delta
function.

4In this work, the short-hand notation D, A is used to denote the partial functional
derivative of A with respect to x; in the set ofl variables x, i.e., keeping all other “compo-
nents” x\x; of x fixed. When necessary for clarity (e.g., to emphasize which variables x\x;
are being kept fixed), the more explicit notation D, A[ x] for this derivative will also be
employed. l

Recall that D,E - §x represents an energy density (see Appendix A: brief summary
of concepts from the theory of functionals). In particular, then, D, E has units of energy
density divided by entropy density, i.e., temperature.
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©This implies a weakly non-local connection of fluxes to irreversible dynamics. Possible
generalizations of that are discussed in the “Summary and discussion” section.

7In this work, the same symbol “8” signifies two things: (i) the variation §f of any field
f and (ii) the spatial Dirac delta function §(r). From the context, it should be clear which
is intended.

Appendix

Appendix A: brief summary of concepts from the theory of functionals

The following synopsis is based on the treatment of Engel and Dreizler (2011),
Appendix A. As the name implies, a functional A maps one or more functions or fields
x(r) to the value A[ x] of A. This value could be a number or, more generally, a function
or field. Following common practice, both A and its value A[ x] are denoted by the nota-
tion A[ x] in what follows. If A[ x] is a functional, then A(¢) := A[ x + €v] is a function of
€ for any fields x, v. Assuming sufficient differentiability, the Taylor series expansion

nok
A[x+ev]=A[X]+Z%DekA[X+EV] le—o +0 (") (73)
k=1 "

about € = 0 makes sense. The kth-order functional derivative D, ® --- ® kaA of Aisa
multifield of order k defined via
(D®- @D AV ®- ® V) = DFA[Xx + ev]|._y, (74)
with
<Dx1®"'®kaA’V1 ®-- V)

(75)
= /dV1V1®"'®/deVk~DX1®"'®DXkA,
and
fi =f@m), f frdv = / fr) dv(ry). (76)
Interpreting v in (74) as a variation’8x of x, let
SA(X] == (D, ®--- ® D A0x ® - ®8x;) (77)

represent the kth-order variation of A[ x] induced by §x. A particular kind of variation
of the field x arises of course when these are time-dependent. For example, the induced

variation
A = (DA,X) (78)

of any A = A[ x] with respect to x represents its time derivative in agreement with (5).
Finally, let a represents the volume density of 4, i.e.,

A= f a(r) dv(r) . (79)

By definition, then, a has units of A per unit volume. Clearly, for A to be finite, a(r) must
be bounded, i.e., reduce to zero as |r| — oo. In general, « itself is a functional. Via the
chain rule for functional differentiation (e.g., Engel and Dreizler 2011, (A.38)), we have

DA = / D, yA Dyya(r’) dv(r') = / Dy(pya(r') dv(r') (80)

via the linearity of A in a.



Hutter and Svendsen Materials Theory (2017) 1:2 Page 18 of 20

Appendix B: functional derivatives based on delta function
Consider the specific choice

v(r) =38,(r') e (81)
for v in (74) based on the delta function 8, (') := §(r’ — r) at fixed r. Here,
8 (82)

is the Cartesian “basis vector” in space of the GENERIC variables. Then,

€= (.- r 8y

DA[x+ev]|._o= / av' v -D,A= / dv' 8, €;- DyA =D, (,,A (83)

follows from (74) for the first-order functional derivative of A with respect to x; := e; - x.
This §-function-based form of the functional derivative is common in physics (e.g., Parr
and Yang 1989; Davis 1996).

As an illustrative example, consider a functional of the form

A[9,x]:fﬂ(6,Vx) dv, (84)
with a a function of 6 and V x explicitly independent of r. In the context of (83), we have

da®’,V'y’' da@(r),V
Dyod = / a®,'x) g gy - 280®), VX))
00" 26(r)

Recall that a4 and its derivatives are implicit fields via the field arguments of 4.

(85)

Analogously,
8 6/,V/ /!

DXk(r)A = / a(av/ /X ) ’ Vla;' av
Xk
a 9/’V/ / a 9/,V/ /

_/v/. 5 240V X) dv/—/s;v/- 94O,V X) 4y (86)
V' x; V' x;
g 9a0@), Vx(r)

IVyr

This specific example, (84), is relevant for the reduction of the strongly non-local model
formulation to the weakly non-local case in the “Special case: weakly non-local model
formulation” section.
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