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Abstract

A new computationally efficient model of an included phase located at the interface
between two other phases is developed by projecting the boundaries of the
inclusion onto the boundary between the two other phases. This reduces the 3D
problem to one on a 2D surface while still being embedded in 3D space, which
significantly reduces computational expense of solving the system. The resulting model
is similar to conventional phase-field models. The properties of the solution are
examined, compared to classical theory, and the numerical behaviour, including a
mesh sensitivity analysis, are discussed. The model accurately captures mesoscale
effects, such as the Gibbs-Thompson effect, coarsening, and coalescence. An example
application of the model simulating the evolution of grain boundary porosity in nuclear
fuel is shown on a representative tetrakaidecahedron-shaped fuel grain.
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Background
The presence of an included phase on the interface between two other phases is a common

phenomenon at multiple length scales. Some examples include vapour condensing on a

solid, liquid flowing/beading on a solid, precipitation of inclusions at grain boundaries, sur-

face films, and reactions on liquid-liquid boundaries. Contemporary diffuse interface mod-

elling techniques are able to capture these three-phase phenomena robustly (Nestler et al.

2005; Choudhury et al. 2012; He et al. 2015; Chakraborty et al. 2014; Provatas et al. 2005;

Li and Kim 2012; Ahmed et al. 2016; Rokkam et al. 2009). The minimisation of interfacial

energy, typically implying the reduction of interface area, is a key driving force for the evo-

lution of the composition and topology of these systems. The total energy of the system in-

cludes the integral of the local energy density over all of the interfaces. The chemical

potential of a component is introduced, which is the partial variational derivative of the

total energy with respect to the amount of that component. The mass flux in the system is

assumed proportional to the gradient of this chemical potential, which evolves the system

towards the local minimum energy.

In these methods, the diffuse interfaces are represented as volumes where the phase

transitions continuously from one value to another. These real-space methods must

therefore be 3D with spatial resolution on the order of the thickness of the diffuse

interface in order to resolve interfaces/curvature effects correctly. Furthermore, in

order to allow for mobility of these interfaces, and to resolve the physical conditions
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leading to their evolution, the methods must resolve the volumes away from the inter-

faces to a similar resolution. The robustness of the diffuse interface models therefore

comes at significant computational expense, which can be prohibitive for many 3D

applications (Welland et al. 2015a). Some savings can be achieved for some models

using adaptive solution techniques (i.e., h and/or p refinement), but the overall compu-

tational cost remains high, limiting model sizes and integration into multiphysics codes

(Provatas et al. 2005; Li and Kim 2012).

In this work, a new computational method is proposed by which the geometry of

phases included on a boundary is captured on the 2D interfaces between the phases

within the 3D volume. Reduction of dimensionality results in substantial savings of

computational expense, enabling faster computation times or consideration of larger

system sizes. This is analogous to the use of beam or shell elements in structural me-

chanics to model the behaviour of high-aspect ratio components. As a consequence of

the surface representation employed by the model, the technique is limited to contact

angles of less than 90° and geometries that allow the interfaces to be mapped to a fixed

computational domain. A contact angle of 90° is frequently considered a threshold for

the wettability of a phase on an interface, an example of which being the convention of

water on a surface being considered hydrophobic or hydrophilic. There are numerous

cases of interest where the contact angle is less than 90° to which this model may be

applied (He et al. 2015; Chakraborty et al. 2014). The cause and impact of the limita-

tions of the model are discussed below.

The model is a conceptual combination of a classical sharp interface in one dimen-

sion and a Cahn-Hilliard phase-field model in the other two dimensions. It retains

much of the robustness of the latter in handling complex interface morphologies in-

cluding formation and coalescence of phases. The model can also incorporate the tem-

poral and spatial dependence of the interfacial energies as may result from facet and

state-dependent interfacial energies.

In the “Model formulation” section, the model is derived in its complete form and

various possible simplifications are discussed. In the “Analysis of the model” section,

the interface width, sharp interface limit, and contact angle error are examined. The

numerical behaviour of a basic implementation is examined in the “Numerical behav-

iour” section, with respect to a mesh sensitivity analysis, parameter dependence, and re-

covery of the Gibbs-Thompson effect. Finally, an example application of the evolution

of grain boundary porosity in nuclear fuel is shown in the “Example application to grain

boundary porosity in nuclear fuel” section.

Model formulation
Consider a 2D surface embedded in 3D space, labelled X. We introduce a second sur-

face, S, a non-negative distance away from X. Figure 1 shows a cross-section of such a

scenario, where surfaces S and X represent phase boundaries between phases α, β, and

γ. In this schematic, where S is apart from X, the surface S demarks the boundary be-

tween α and β and X demarks the boundary between β and γ. Where S coincides with

X, the surfaces represent the same boundary between the α and γ phases.

The volume enclosed between S and X represents an included phase on X, as shown

in Fig. 2. The intent is to calculate the evolution of the parameterised surface S on the

computational domain X, thereby capturing the 3D interface between the three phase
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boundaries on a single surface. The surface S can be represented as a parametrisation

on the surface X. This is accomplished by transforming S onto X following a projection

vector, r!, as depicted in Fig. 3. This projection vector is required to be smoothly vary-

ing everywhere on X, including any sharp edges and vertices and should be close to the

local normal as discussed below.

In order to generate such a vector field for a closed surface, a suitable “focal point”,

f
!
, is selected towards which r! is directed. The point f

!
is usually, but is not necessar-

ily required to be, selected as the centre of curvature of X. The selection of the point

f
!

does impose some limitations on the model which are discussed at the end of this

section. Representing the current point on X as x!, the vector field is defined

r!¼ f
!
− x!¼ rr̂ ; ð1Þ

where r̂ is the unit direction vector of r! and r is the magnitude of the r! vector. The

corresponding point on S, s!, is defined by the equation

s!¼ x!þ hr̂ ; ð2Þ

in which h is the unknown scalar variable calculated on X, which is the distance from

surface X to surface S along the vector r!.

It should be noted that h may be positive or negative, representing surfaces above or

below the surface of X relative to f
!

. In principle, it is possible to represent separate

surfaces above and below surface X simultaneously leading to two values of h. However,

in this work, a single surface S is considered that can be mirrored assuming symmetry

above and below X.

Fig. 1 Schematic of surfaces S and X separating phases α, β, and γ. The contact angle θ is also shown

Fig. 2 Schematic of how a volume enclosed between S and X can represent a precipitated phase on X
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The total interfacial energy of the system, E, is calculated as the integral of the inter-

facial energy density, σ, between phases (labelled by subscripts) and a possible triple

junction energy,

E ¼
Z
S

σαβdS þ
Z
X

σβγdX where S≠X

þ
Z
X

σαγdX where S ¼ X

þ
Z
L

σαβγdL

ð3Þ

where dS is an infinitesimal area of surface S and dX is an infinitesimal area of surface

X, and dL is an infinitesimal line segment between S and X corresponding to the triple

junction. In general, externally imposed forces, such as gravity and aerodynamic drag,

may be introduced in Eq. 3 as additional system potentials; however, these are

neglected from the current derivation for the sake of simplicity.

Since the surface S is defined parametrically in terms of the computational domain,

the relation between the area elements of S and X is

dS ¼ s1
!� s2

!�� ��dX; ð4Þ

where the vectors s1
! and s2

! are the gradients of surface S on X corresponding to the

unit surface tangent vectors τ̂1 and τ̂2 at point x!, as shown in Fig. 3. The figure shows

orthogonal tangent vectors, although the following derivation does not require such.

Denoting the spatial derivatives in the local coordinates along these vectors with the

subscripts τ1 and τ2, s1
! and s2

! may be calculated and expressed as,

s1
!¼ τ̂1⋅∇ð Þ s!¼ τ̂1 þ hτ1 r̂ þ hr̂ τ1 ; ð5Þ
s2
!¼ τ̂2⋅∇ð Þ s!¼ τ̂2 þ hτ2 r̂ þ hr̂ τ2 : ð6Þ

In order to perform the integral over the whole domain while distinguishing between

“S ≠ X” and “S = X”, a phase function, p(h), is defined that varies between 0 and 1, cor-

responding to where S is in contact with X, as determined by the local value of h. This

Fig. 3 Schematic of projection method, showing (left) selection of suitable focal point X and (right) labelled
projection construct
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scheme is illustrated in Fig. 4 which shows the range of h in which p varies from 1 to

0, and the resulting diffuse interface of width d. This interface is treated as being

spatially diffuse, similar to standard phase-field models that demonstrate robustness

and versatility of handling complex interface morphology (Cahn and Hilliard 1958).

Due to the spatial variation of h as the dependant variable, this implies p(h) be diffuse

in h, between h = 0, representing the coincidence of S and X, and h > h′, representing

the separation of S and X. The value of h′ is user-defined transition size and linked to

the choice of the form of p(h). The region 0 > h >h′ therefore denotes the diffuse triple

junction interface between the three phases.

It should be noted that the model of the included phase is sharp across the surface S

which has no associated thickness. The diffuse interface occurs where S meets X, over

a user-defined transition size in h and therefore an interval in space. This region also

defines the α − β − γ triple junction which is therefore partially diffuse. Since it is here

that the contact angle is defined, the user-defined transition size impacts the contact

angle observed in the model. In the “Stationary point” section, we demonstrate that in

the limit of zero transition size, the sharp interface contact angle is recovered. In the

“Contact angle” section, we further demonstrate that the results of the numerical model

converge towards the sharp interface when the transition size is decreased.

The form of p(h) is flexible as long as the following conditions are respected:

p h ¼ 0ð Þ ¼ 0; ð7Þ
p h ¼ h0ð Þ ¼ 1; ð8Þ
∂p
∂h

h ¼ 0ð Þ ¼ ∂p
∂h

h ¼ h0ð Þ ¼ 0; ð9Þ

such that both phases at equilibrium are locally stable with respect to variations in h. A

particular example of p(h) is shown in the “Numerical behaviour” section, but the prop-

erties of the model can be derived regardless of this choice.

Triple junction energy can be added to the model, which only occurs within the diffuse

interface. A function g(p) is introduced, with the requirement that g(p = 0) = g(p = 1) = 0

and ∂g
∂p p ¼ 0ð Þ ¼ ∂g

∂p p ¼ 1ð Þ ¼ 0. Once more, the form of this function is flexible, but a

standard double well potential, g∝ p2(1 − p)2, may be used.

Utilising the phase function and the interface energy densities with subscripts accord-

ing to the phases, the energy functional becomes

Fig. 4 Schematic of how the diffuse interface is captured as p varies from 0 to 1, and the associated diffuse
interface width, d
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E ¼
Z
X

p σαβ s1
!� s2

!�� ��þ σβγ
� �þ σαγ 1−p½ � þ σαβγg pð Þ� �

dX; ð10Þ

which describes the energy of the system in terms of the areas of the three interfaces.

Suppose now that the volume enclosed between S and X represents the precipitated (β)

phase, consisting of a mobile species with concentration c. Assuming constant density

ρ, the concentration of the species is related to the volume by c = ρV. The chemical po-

tential of this species, μ, is defined as the functional derivative with respect to the

concentration

μ ¼ δE
δc

¼ 1
ρ

δE
δh

δh
δV

: ð11Þ

which necessitates calculating the variational derivative of volume enclosed by h.

Consider the area elements as the bases of pyramids with apex f
!
, as shown in Fig. 3.

The volume is calculated as one third the base times the perpendicular height, which is

the projection of the normal vector of X, n̂; onto r!. The enclosed volume is therefore

the difference between pyramids defined by X and S, and the volume is

V ¼
Z
X

r
3

n̂− s1
!� s2

!� �
1−

h
r

� �	 

⋅r̂

� �
dX: ð12Þ

The functional derivative of Eq. 12 is evaluated by the Euler-Lagrange equation

δV
δh

¼ ∂
∂h

−
∂
∂τ̂ 1

∂
∂hτ1

−
∂
∂τ̂ 2

∂
∂hτ2

� �
dV
dA

� �
: ð13Þ

The last two terms in the first parenthesis on the right-hand side consist of the deriv-

atives with respect to the gradient in h. They are found to be zero utilising s1
! and s2

!

defined by Eq. 5 and 6, respectively, and noting that the triple product a!� b
!� �

⋅ a!¼ 0

is for all a! and b
!
. Additionally, it can be shown that for pyramids, the area of any cross-

section scales according to the square of the fractional height, and therefore (Harris and

Stöcker 1998),

si
! h;∇hð Þ ¼ 1−

h
r

� �
si
! h ¼ 0;∇hð Þ; ð14Þ

Therefore, one can write

∂
∂hτ1

s2
!� s2

!� �
⋅ r!� � ¼ r̂ � s2

!� �
⋅ r!¼ 0; ð15Þ

∂
∂hτ2

s1
!� s2

!� �
⋅ r!� � ¼ s1

!� r̂
� �

⋅ r!¼ 0; ð16Þ

∂ s1
!� s2

!� �
∂h

¼ −
2
r

1−
h
r

� �−1�
s1
!� s2

!Þ; ð17Þ

which, when simplified, yields the intuitive answer for Eq. 13,
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δV
δh

¼ s1
!� s2

!� �
⋅r̂ : ð18Þ

The variational derivative of the energy functional with respect to the variable h must

also be evaluated using the Euler-Lagrange equation. Noting that in general, the phase

function depends only on h, while s1
! and s2

! depends on both h and ∇h, δEδh becomes

δE
δh

¼ σαβ s1
!� s2

!�� ��þ σβγ−σαγ þ σαβγ
∂g
∂p

� �
∂p
∂h

þ pσαβ
∂ s1
!� s2

!�� ��
∂h

−σαβ
∂
∂τ̂ 1

p
∂ s1
!� s2

!�� ��
∂hτ1

þ ∂
∂τ̂ 2

; p
∂ s1
!� s2

!�� ��
∂hτ2

� �
; ð19Þ

which can be further simplified utilising Eqs. 5, 6, and 17 to obtain a form suitable for

implementation in computer codes

δE
δh

¼ σaβj→s1 �→s2 j þ σβy−σay þ σaβy
∂g
∂p

� �
∂p
∂h

−pσaβ
2
r

1−
h
r

� �−1

j→s1 �→s2j

−σaβ
∂
∂τ̂1

p
s1
!� s2

!
s1
!� s2

!�� �� ⋅ r̂ � s2
!þ ∂

∂τ̂2
p

s1
!� s2

!
s1
!� s2

!�� �� ⋅ s1!� r̂

 !
:

ð20Þ

This can be used to evaluate the chemical potential of the included phase by Eq. 11.

Note that the term s1
!�s2!
s1
!�s2!
�� �� ¼ n̂S; the unit normal to the interface.

The gradient in the chemical potential is the driving force for the mass flux, J. The

mass flux may apply to a layer along the interface S, in the case of surface diffusion or

as an approximation to bulk diffusion, or the enclosed volume, such as vapour phase

transport. In general, surface, bulk, and volume diffusion occur, but one of them usually

dominates for any specific situation (Welland 2012).

In order for this to be a reasonable approximation for volume diffusion, the gradient

of μ along r̂ must be small relative to the gradient along surface tangent vectors τ1
! andbτ2 , such as when the thickness of the included phase is small compared to the charac-

teristic length scale along X (i.e. when h≪ r). Using the notation ∇τ ¼ ∂
∂τ1

; ∂
∂τ2

, the net

flux acting on the volume, JV, is

JV ¼ ρVMV −∇τμþ FV

!h i

; ð21Þ

where FV

!

is a generic external force and MV is the mobility through the volume, re-

lated to the diffusion coefficient, D, by MV ¼ D
RT for an ideal solution where RT is the

ideal gas constant times the absolute temperature (Welland et al. 2014). Similarly, the

net mass flux from surface phenomena, JS, represented on X is

JS ¼ ρ s1
!� s2

!�� ��TintMS −∇Sμþ FS

!h i

: ð22Þ

Here, the volume is replaced with the surface area, s1
!� s2

!�� ��, times the effective thickness

of the interface, Tint. MS is the surface mobility, which for practical purposes can be com-

bined with the thickness into a single effective material property, DSeff

RT ¼ TintMS . The vari-

able FS

!

accounts for surface forces, which may be present, such as drag or friction. The
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gradient along the surface, ∇S, can be expressed in terms of ∇τ, using the transformation

matrix [T] that accounts for the change in path length along each coordinate akin to the ar-

bitrary Lagrangian-Eulerian method (Donea et al. 2004),

∇S ¼ T½ �∇τ: ð23Þ

The overall mass conservation equation for concentration of the beta phase, assum-

ing constant density as in Eq. 11, including both surface and volume fluxes, as well as a

source term, Q, becomes

∂c
∂t

¼ ρ
δV
δh

∂h
∂t

¼ −∇τ⋅JV þ −∇S⋅J S þ Q: ð24Þ

The model therefore requires the solution of the partial differential equation for Eq. 24

with the chemical potential from Eq. 11, the variation of volume with h from Eq. 18, and

the variation in total energy with h from Eq. 20. When combined, this is a fourth order

non-linear partial differential equation for h, defined on the 2D surface X. Alternately,

Eq. 11 may be solved simultaneously with Eq. 24 for μ and h as two coupled second

order equations on X. This allows it to be solved using the standard C0 continuous

Lagrange elements available in most finite-element method codes. Note that although the

equations are in terms of the distances between surfaces h, the conserved quantity is still

the concentration of the β phase c. This is also equivalent to conservation of the volume

of the β phase since density has been assumed constant in this version of the model.

The suitability criteria for the vector field r! and the selection of the focal point f
!

can now specified. Considering Fig. 3, it is clear that in order for S to be uniquely de-

fined, there must be a one-to-one mapping from X to S. Specifically, n̂S⋅r̂≠0 , for all

points on X. From this requirement, the contact angle of the included phase with re-

spect to surface X must be less than the minimum value of sin−1 n̂X ⋅r̂ð Þ over the do-

main. This is the reason that contact angles equal to or greater than 90° are not

representable in this work in the ideal case where r̂ ¼ n̂X . For practical geometries

where n̂X ⋅r̂ < 1, such as along edges between facets, this limits the contact angle to less

than half the internal angle. By careful definition of r̂ , the limitations imposed by this

requirement can be minimised. Note that this does not preclude concave surfaces nor

does it preclude complex 2D manifolds.

Thin interface approximation

In the case where f
!

may be far enough from X such that r≫ h, the spatial variation of

r̂ can be neglected. Under this approximation, Eqs. 5 and 6 become

s1
!¼ bτ1 þ hτ1 r̂ ; ð25Þ

s2
!¼ bτ2 þ hτ2 r̂ : ð26Þ

One can also simplify Eq. 12 to read

V ¼
Z
X

n̂ ⋅ hr̂ dX; ð27Þ

and therefore,
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δV
δh

¼ n̂⋅r̂ ; ð28Þ

which avoids the multiple calculations of the cross product, s1
!� s2

!, and their deriva-

tives, leading to significant computational savings.

Special case of flat interfaces

A further simplification is possible when r̂≈n̂ (e.g. a planer or spherical geometry), such

that Eqs. 5 and 6 become

s1
!¼ bτ1 þ hτ1 n̂; ð29Þ
s2
!¼ bτ2 þ hτ2 n̂: ð30Þ

and leads to a simplified form for the cross-products, in the tangent system,

s1
!� s2

!¼ 〈−hτ1 ;−hτ2 ; 1〉; ð31Þ

s1
!� s2

!�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2τ1 þ h2τ2

q
: ð32Þ

Additionally, for the planar case, one simplifies Eq. 28 to

δV
δh

¼ 1: ð33Þ

The mass balance in Eq. 24 therefore becomes

ρ
∂h
∂t

¼ −∇τ⋅JV þ −∇S⋅JS þ Q; ð34Þ

and the chemical potential becomes

μ ¼ 1
ρ

δE
δh

¼ 1
ρ

σαβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2τ1 þ h2τ2

q
þ σβγ−σαγ þ σαβγ

∂g
∂p

� �
∂p
∂h

−
1
ρ
∇τ⋅

pσαβ∇τhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2τ1 þ h2τ2

q :

ð35Þ

The mass-flux equations remain largely unchanged except for the simplified volume

in Eq. 21.

Analysis of the model
The properties of the solution to the 1D problem with the flat interface discussed in

the “Special case of flat interfaces” section is now examined. Figure 5 shows an example

of an expected solution in the neighbourhood of the interface shown in Fig. 1, showing

approximately straight h profiles on either side of the interface, with a simulated con-

tact angle ϕ.

Condition far from the interface

As depicted in Fig. 5, the profile of h and p may have a non-zero minima, h∞ and p∞, away

from the interface. This is for the general case in phases of small radii to increase the solu-

bility of the included species in the surrounding material (Lupis 1983; Welland et al.

2015b). Here, the surface S is flat and parallel to X. For geometries of reasonable size

h∞≪ r, in which case, s1
!� s2

!¼ dA n̂. The chemical potential from Eq. 11 is therefore
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μ ¼ 1
ρ

σαβ þ σβγ−σαγ þ σαβγ
∂g
∂p

����
p∞

 !
∂p
∂h

����
h∞
: ð36Þ

The chemical potential far from the interface is therefore determined completely by

the interfacial energies, p∞, and the form of p(h). In the “Comparison against the

Gibbs-Thompson effect” section, the model numerical predictions will be compared

against the classical Gibbs-Thompson relation.

Interface width

An approximation of the interface width can be calculated knowing that p(h) varies

from ~0 to ~1 across the interface. Following the method established by Cahn and Hil-

liard (Cahn and Hilliard 1958), the interface width can be characterised

d≈
1

max ∂p
∂τ

¼ max
∂p
∂h

hτ

� �−1

: ð37Þ

The interface width thus depends on the form of p(h) and is inversely proportional to ∂p
∂h.

For symmetric phase functions, max ∂p
∂h typically occurs at p ≈ 0.5. For this point, an

approximate value of hτ(p = 0.5) can be obtained as the average of the values at hτ(p =

0) = 0 and hτ(p = 1) = tan θ, such that hτ p ¼ 0:5ð Þ≈ tanθ
2 . An approximate interface width

is therefore

d≈
2

tanθ
∂p
∂h

����
p¼0:5

 !−1

: ð38Þ

This approximation will be shown to be appropriate in the “Contact angle” section.

Stationary point

The solution depicted in Fig. 5 represents a minimum in the energy functional in Eq.

10, subject to a constraint of mass conservation. This statement is equivalent to assert-

ing a constant chemical potential everywhere in the system. Disregarding generalised

body forces, which may be position dependant, the energy functional in Eq. 10 does

Fig. 5 Expected solution of the system in the neighbourhood of the interface showing (top) the expected
profile of h with the simulated contact angle ϕ and (bottom) the expected profile of p varying between p∞

and 1 over an interface width, d
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not explicitly depend on the spatial coordinates, and therefore, the Beltrami identity

may be used to obtain the stationary points of the Euler-Lagrange equation. For a func-

tional with integrand L, the identity is

L−∇u⋅
∂L
∂∇u

¼ c0 ð39Þ

where c0 is a constant. Applying this to the functional in Eq. 10, noting that

s1
!� s2

!�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2τ

q
in 1D, and simplifying,

p
σαβffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2τ

q þ σβγ−σαγ

264
375þ σαγ þ g∞σαβγ ¼ c0: ð40Þ

Considering the solution far from the interface between the α and γ phases, h ap-

proaches a constant, and hτ approaches 0. The constant c0 is therefore

c0 ¼ p∞ σαβ þ σβγ−σαγ
� �þ σαγ þ g∞σαβγ : ð41Þ

In order to relate this to the contact angle, the tangential derivative of h may be writ-

ten in terms of the contact angle with respect to the surface X, ϕ (i.e. hτ = tan ϕ), and

use the trigonometric identity cosϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2ϕ

p ,

p σαβ cosϕ þ σβγ−σαγ

� �þ gσαβγ ¼ p∞ σαβ þ σβγ−σαγ

� �þ g∞σαβγ : ð42Þ

The sharp interface limit may be examined where the interface width approaches zero

(d→ 0). Through Eq. 37, one finds that the sharp interface occurs when ∂p
∂h→∞ , which

corresponds to p(h) being a step function centred at h = 0. The step function requires

p∞ = 0 away from the interface, since it cannot take on an intermediate value, while

inside the inclusion p = 1, which implies g = 0. Young’s equation for a planer geometry

is therefore recovered, such that the simulated angle ϕ is equal to the contact angle θ,

σαβ cosθ þ σβγ−σαγ ¼ 0: ð43Þ

In general, the phase function is continuous and p∞ is non-zero. Then, p ≥ p∞ every-

where and

cosϕ ¼ p∞ σαβ þ σβγ−σαγ
� �þ g∞−g½ �σαβγ

pσαβ
−
σβγ−σαγ
σαβ

: ð44Þ

and if the triple junction contribution is small,

cosϕ ¼ p∞

p
þ p∞

p
−1

� �
σβγ−σαγ
σαβ

: ð45Þ

Combining Eq. 43 with Eq. 44,

p cosϕ− cosθ½ � ¼ p∞ 1− cosθ½ �þ g∞−g½ �σαβγ
σαβ

: ð46Þ

Inside the inclusion region, p = 1 and Eq. 46 may be approximated as
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θ−ϕ ¼
p∞ 1− cosθ½ � þ g∞σαβγ

σαβ

sinθ
: ð47Þ

Since 0°< θ < 90°, we expect θ > ϕ in all cases.

Numerical behaviour
In order to demonstrate and analyse the performance of the model, it is compared to an

analytic sharp interface solution representing a 1D azimuthally symmetric geometry in polar

coordinates of a precipitate on an interface reflected on surface X. In this case, the segment

in Fig. 1 where S is apart from X, corresponding to the β − γ interface is the computational

bisection of the precipitate and does not constitute a real interface and therefore σβγ = 0.

The form of p(h) is selected and parameterised by a transition size in h, symbolised

as a. A finite transition thickness is selected because it is numerically difficult to imple-

ment p as a discontinuous step function. The thickness of the transition region is an in-

put parameter that may be related to the finite dimension of the α-β-γ junctions or

considered strictly computational in nature. A suitable form of the phase function

based on a smoothed step function was chosen for its symmetry and smoothness,

p hð Þ ¼
h
a

� �3

6
h
a

� �2

−15
h
a

� �
þ 10

 !
0 ≤ h < a

1 h ≥ a

8><>: : ð48Þ

The interface width may now be calculated via Eq. 38,

d≈
2a
tanθ

: ð49Þ

The model was implemented in COMSOL Multiphysics 5.2a using user-defined weak

form equations and solved numerical with first order Lagrange elements for both the

chemical potential and the displacement from the surface.

Contact angle

The contact angle of an inclusion on a flat surface according to the sharp interface the-

ory is given by Young’s equation,

cos 2θð Þ ¼ σαγ

2σαβ
ð50Þ

A parameter sweep was conducted in which bubbles with an initial projected radius

of 5 μm were initialized on a 10 μm domain and permitted to evolve to their equilib-

rium shapes for surface energy ratios of σαγ/σαβ = 0.174 to 1.9696, corresponding to the-

oretical angles of 10° to 85°, and transition sizes of a = 0.05 to 0.3 μm, respectively. As

discussed in the “Stationary point” section, one would expect to recover the sharp

interface limit in the limit of zero transition size.

The 1D model allows an extremely fine finite-element mesh size of 1 nm to be cre-

ated to eliminate potential effects of discretization error. A mesh sensitivity study was

conducted separately in the “Mesh sensitivity study” section to investigate this issue.

The simulated equilibrium geometries are shown in Fig. 6 for the 0.3 and 0.05 μm tran-

sition sizes. As expected, the impact of the transition size is visible at the edge of the

bubble (i.e. r ≈ 0.5 μm) in which the 0.3 μm transition size produces a much smoother
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corner compared to the 0.05 μm transition size. As a result of the smoother transition,

the interface width is visibly larger for the 0.3 μm case. According to Eq. 49, the ap-

proximate interface widths for 85° should be d0.3 μm = 0.0529 μm and d0.05 μm =

0.0088 μm, which is roughly consistent with the observed smoothed region.

The simulated contact angle, ϕ, was calculated using two different techniques for

comparison purposes. The first technique performs this calculation directly by finding

the gradient of the bubble shape and converting it to an angle relative to the horizontal

via inverse tangent function. The post-processing of this method is simple since the

minimum gradient in the model occurs at the edge of the bubble and can therefore be

found as the minimum on the finite-element domain, ϕ = atan(min(htau)).

The angle calculated by this method is presented in Fig. 7. The results indicate a clear

trend converging towards the theoretical sharp interface angle θ as the transition size

decreases for the whole range of angles, as expected. The difference between the angle

observed in the simulations and the sharp interface prediction generally increases with

the angle for large transition sizes; however, this trend diminishes as the transition size

is decreased such that it becomes negligible for the 0.1 and 0.05 μm transition sizes.

As seen in Fig. 6, the finite interface thickness smooths the corner of the bubble, thereby

reducing the angle calculated by this method. Although this provides a good measure of the

sharpness of the interface, it does not indicate if the curvature is behaving as expected in the

bulk material. In order to avoid this difficulty, the second method calculates the expected

contact angle based on the values away from the transition region assuming the geometry in

Fig. 6 Simulated bubble cross-sections for surface energies corresponding to sharp interface angles of 10°
to 85° for transition size of 0.3 μm (top left) and 0.05 μm (bottom left), with enlarged triple junction regions
(top right and bottom right, respectively)
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Fig. 8. Due to symmetry, the centre of the sphere defining the boundary of the bubble is lo-

cated along the axis of symmetry (i.e. r = 0) displaced below the origin a distance Z0. The

contact angle can be found done using the bubble height at the origin, h0, and the height at

any other location on the sphere, h(r). Using this methodology, the intersection angle of this

sphere with the h = 0 axis can be calculated according to

Z0 ¼ r2 þ h rð Þð Þ2 þ h0ð Þ2
2 h rð Þ−h0ð Þ ; ð51Þ

θ ¼ acos
Z0

h0 þ Z0

� �
: ð52Þ

Since this is valid for all points on the β phase in the model, the average value is uti-

lised to reduce numerical noise and obtain a single value for comparison. Note that this

Fig. 7 Left: plot of contact angles calculated from gradient of simulation as a function of the theoretical
sharp interface angle for the transition sizes between 0.05 and 0.3 μm. Right: the difference between the
theoretical and simulated contact angles from the figure to the left

Fig. 8 Geometry for calculating the contact angle from two points on the surface
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method is complimentary to the gradient-based method, since it is not calculating the

contact angle actually observed in the model, but rather, it calculates the equivalent

contact angle for a sphere of the same radius of curvature and location.

The contact angles calculated via this method is shown in Fig. 9 (left) for the same

set of simulation results from Fig. 6. This second method shows better agreement with

the theoretical values since it is less sensitive to smoothing of the edges in the transi-

tion zone. The error relative to the sharp interface limit is shown in Fig. 9 (right). These

results also show a clear trend of converging towards the sharp interface limit as the

transition size is decreased, which is in agreement with Eq. 48.

The simulated contact angle underpredicts the theoretical angle for all of the simula-

tions in the sweep as a function of the transition size as expected by Eq. 47. The magni-

tude of the error observed is relatively small, roughly one third of the magnitude of the

error calculated at the edge of the bubble, and can be managed via transition size and

triple junction energy.

Mesh sensitivity study

It is necessary to develop an understanding of the meshing requirements in order to

make efficient use of the model. To this end, a mesh sensitivity study was conducted

for a fixed transition size of a = 0.1 μm and mesh density ranging from 0.1 to 100 mesh

elements per transition size (i.e. a unitless dimension) for contact angles of 10° to 85°.

Following the same procedure from the “Contact angle” section, the effective contact

angle from the simulation was calculated using both the minimum gradient at the αβγ-

triple junction method and the radius of curvature from the bulk αβ-interface method.

These results are presented in Figs. 10 and 11, respectively. For all angles, it is observed

that significant mesh dependence (i.e. non-converged values) results from excessively

coarse meshes. For a sufficiently small mesh size, mesh sensitivity becomes small and

the results converge a value close to the sharp interface limit.

Equation 49 has been superimposed on the simulation results assuming that the

interface width (d) is equal to the mesh size (equivalent to having one mesh element

per interface width). As expected, the threshold mesh size required for a converged

Fig. 9 Left: plot of contact angles calculated from the two-point method as a function of the theoretical
sharp interface angle for the transition sizes between 0.05 and 0.3 μm. Right: difference between the theoretical
and simulated contact angles from the figure to the left
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solution appears to be roughly proportional to this prediction, plus some additional

mesh density for the larger contact angles to compensate for the numerical difficulty

associated with large gradients.

Similar to the results from the transition size study, the mesh sensitivity calculated

from the radius of curvature method demonstrates comparatively smaller error mea-

surements and smoother convergence. Once again, more mesh sensitivity is observed

at higher contact angles.

Overall, the results suggest that efficient meshes should contain approximately 1–10

linear mesh elements per interface width, with higher contact angles requiring denser

meshes. These results are consistent with typical mesh densities used in phase-field or

other simulations with varying topologies (Welland et al. 2014).

Comparison against the Gibbs-Thompson effect

In order to demonstrate that the model captures mesoscale effects such as the Gibbs-

Thompson effect correctly, simulations were performed varying the initial bubble

Fig. 10 Left: plot of contact angles calculated via the gradient method as a function of the mesh density
and theoretical sharp interface contact angles for a transition size of 0.1 μm. Right: difference between the
theoretical and simulated contact angles from the figure to the left

Fig. 11 Left: plot of contact angles calculated via the two-point method as a function of the mesh density
and theoretical sharp interface angle for a transition size of 0.1 μm. Right: difference between the theoretical
and simulated contact angles from the figure to the left
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radius over several orders of magnitude and determining the equilibrium bubble radius

and corresponding chemical potential. Simulations were run using interfacial energies

of σαβ/σαγ = cos(30°)/2 and σβγ = 0 which correspond to a contact angle θ = 30° on a flat

surface according to Eq. 50. The classical Gibbs-Thompson theory predicts (Lupis

1983)

μr−μ∞ ¼ 2σαβ
req

; ð53Þ

where μr and μ∞ are the chemical potentials for a bubble of radius r and a flat interface,

respectively. Figure 12 shows the calculated μr as a function of the equilibrium bubble

radius, along with Eq. 53. As the spatial extent of the simulation is increased by several

orders of magnitude, the transition size may be increased accordingly to reduce compu-

tational cost; thus, several overlapping datasets are depicted.

It is noted that as r→∞, μr→ 0, implying that the flat interface chemical potential

μ∞ = 0. It should be emphasised here that this does not preclude a standard reference

potential but, rather, that this shifts the results uniformly.

The agreement between the simulated μr and the corresponding value computed with

the analytical solution (i.e. Eq. 53) with μ∞ = 0 is excellent, implying that the effect of

precipitates with high surface curvature modifying the solubility of c in the surrounding

material is correctly captured. This effect leads to various coarsening phenomena, along

with bubble collapse if energetically unfavourable (Welland et al. 2015b).

Example application to grain boundary porosity in nuclear fuel
As a demonstration of the applicability of the model in 3D, a simulation of the evolu-

tion of intergranular porosity in UO2 nuclear fuel was performed. The initial porosity is

controlled as part of the manufacturing processes in which UO2 powdered compacts

are sintered at high temperatures to form solid pellets. The sintering process also con-

tinues during fuel irradiation due to a combination of high operational temperatures,

radiation fields, and hydrostatic pressure. During operation in-reactor, the grain bound-

aries accumulate insoluble fission products—such as xenon and krypton—which

Fig. 12 Plot of predicted mu vs equilibrium bubble radius
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pressurise and grow intergranular porosity. The behaviour of these intergranular bub-

bles is important to fuel performance as they contribute to design limiting phenomena

including fuel swelling, degradation of thermal conductivity, and potential releases of

fission product inventories. The bubbles grow, coalesce, and percolate along grain faces

and grain edges, forming a complex network of tunnels, as shown in Fig. 13 (Ahmed et

al. 2016; Rokkam et al. 2009; White and Tucker 1983; Turnbull and Cornell 1971; Jack-

son and Catlow 1985; White 2001; Pastore 2012). Once a continuous tunnel reaches a

crack or the outer surface of a fuel pellet, all the gas in the interconnected tunnel may

be vented and the tunnels may collapse.

The intergranular porosity is modelled as phase confined to the grain boundaries of a

polycrystalline material. The grain geometry is represented as a truncated octahedron,

which is a tetrakaidecahedron with eight regular hexagonal faces and six square faces,

that can be tiled infinitely to represent a polycrystalline lattice (White and Tucker

1983). This geometry was constructed from 2D planer surfaces arranged in 3D space to

produce the truncated octahedron shape with the focal point, f, at the 3D centre. A

grain approximately 15 μm across was meshed with a maximum element size of

0.69 μm, which from Eq. 49 corresponds to five mesh elements per interface width. A

total of 31,974 quadrilateral elements in a mapped/structured grid on square faces and

268,546 triangular elements were used on the hexagonal faces. The resulting model

contains 332,498 degrees of freedom (DOF). The mesh nodes along the edges are

shared between the adjoining faces which enforces continuity of the h field and there-

fore surface S between the faces.

For comparison, meshing this volume with tetrahedral elements of uniform size with

the same maximum size would require approximately 36 million 3D elements and ap-

proximately 120 times the DOF. Additionally, the computational expense of the 2D

model is lower compared to the 3D model since the 2D finite elements also produce

greater matrix sparsity associated with the reduction in dimensionality.

Results of a sample calculation on this grain are provided in Fig. 14, which was ini-

tialized with a random initial h field uniformly between 22.6 and 223 nm, equivalent to

7.7% initial intergranular porosity (Additional file 1). These results are based off surface

Fig. 13 Example scanning electron microscope images of grain boundary porosity of irradiated nuclear
fuels during early stages of formation (left) and advanced stages (White 2004; White et al. 2006)
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energies corresponding to a contact of 30° with respect to the computational domain X

and a transition size τ of 0.1 μm. The porosity was assumed to be reflected above and

below each face, which produced an open bubble section on the grain edges and at the

vertices, as seen in Fig. 14.

The timescale in this simulation is arbitrary and depends on the material properties

such as orientation-dependent interfacial energies and the surface mobility.

The initial randomly fluctuating porosity rapidly smooths to reduce the surface area

and areas of high curvature. The smoothed surfaces then begin to decompose into bub-

bles with the set contact angle (beading). The phase decomposition begins at the verti-

ces and edges and propagates inwards since these are the lowest energy locations. The

bubbles then coarsen and coalesce with the other bubbles nearby.

It is interesting to note that the porosity slowly moves towards the grain boundary

edges and vertices, which is energetically favourable due to the increase in interfaces.

Edge and vertex adherence is therefore implicitly captured within the model. This

phenomenon is observed experimentally in post-irradiation examination of irradiated

fuel samples, where rounded prismatic tunnels form along the grain edges (White and

Tucker 1983). With sufficient grain edge porosity, these tunnels can form an

Fig. 14 Results of grain boundary porosity simulation progressing from top left to bottom right showing
decomposition of the initial fluctuating porosity into discrete bubbles followed by interlinkage, coalescence,
and relocation towards edges Additional file 1
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interconnected network connecting to macroscopic cracks venting the fission gas accu-

mulated on the grain boundary faces to the free volume.

This simulation result demonstrates preliminarily the applicability of this model to

the problem of grain boundary porosity, including prediction of key features, such as

bubble coalescence and edge and vertex adherence, in a computationally efficient man-

ner. The use of this work in analysing intergranular porosity in nuclear fuel requires

additional physics such as orientation-dependent grain boundary energies and source

terms for fission gas. The kinetics of the model could be determined by calibration

against experimental data or by including information from lower length-scale

calculations.

Discussion
This technique can be applied to study a wide range of phenomena where a phase is

confined to an interface between two other phases. In this paper, we have derived the

model considering interfacial energies as the only driving force for the evolution of the

included phase, although the same methodology can be used to extend to consider

many addition effects such as pressure, gravity, temperature gradients, or drag. These

effects can be incorporated in one of two ways. First, they can be directly added as vol-

ume or surface force terms in Eqs. 21 and 22. This may be appropriate for some rela-

tively simple phenomena where the effect on the species flux is already known. The

second method is more general, in that the energy functional in Eq. 3 or 10 is modified

to include the energy of the additional phenomena. For example, adding the gravita-

tional potential energy to the functional and propagating the change through the rest

of the derivation would produce an additional terms in the chemical potential leading

to an additional flux term corresponding to the force of gravity (or buoyancy) on the

included phases.

While the technique is versatile and widely applicable, there are important limitations

as a result of the projection method. In order for the technique to work, it must be

possible to write the potential energy as a function of the position x! , h, and their

derivatives (e.g. volume, surface area, or phase) or other variables defined along the sur-

face X. Thus, some volumetric effects such as fluid pressure or dissolved species could

be included assuming that they do not vary away from the surface. However, it is pos-

sible to couple this model of phase inclusions on a 2D surface to another model in the

3D space, potentially on a coarser mesh. An example of this is wind flow around a

vehicle moving water droplets on its surface.

The model is able to accommodate moderate motion of S, as long as the relationship

between S and f
!

is maintained. In order to avoid inverting or producing self-

intersection of the surface S, the magnitude h must be less than the distance to the

focal point f
!

which limits grain growth or movement. Boundary pinning effects due to

the inclusions on the surface may also be considered; however, it is not well suited for

modelling inclusions above or below the surface and so break-away is not permitted.

This is a result of the projection method used to track the interfaces, the mapping must

be one to one between X and S. Thus, it only tracks one interface at each point for

each variable h. In simple cases, effects from above or below may be captured as

source/sink terms in the conservation equation or additional contributions to the
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energy functional. For example, diffusion of a species from a grain can become a source

term on the grain surface. The diffusion could be solved with a spatially coarser mesh

or lower dimensionality model leading to very significant savings. However, if the inside

of the grain was already treated with a comparable phase-field model, this surface

model might be redundant, introducing additional restrictions and overhead from the

projection technique.

In its current formulation, it has been implicitly assumed that X and r! are independ-

ent of time. However, this assumption could be relaxed allowing for somewhat greater

deformation of the computational domain with time. This would require additional

care to update the r! vector field at each timestep as well as ensuring that the conser-

vation of the included phase is still respected. It is also necessary to maintain the top-

ology of the geometry (boundaries cannot be created or destroyed) or introduce a

remeshing/reintialisation step in order to complete the simulation when these changes

occur.

This technique is analogous to the use of shell element in modelling solid mechanics.

The techniques achieve a reduction in dimensionality by incorporating the response in

the out-of-plane directions into the response along the surface. Both techniques are

only applicable to a subset of problems; however, where they are applicable, they can

result in very substantial reductions in computational costs.

Conclusions
The current work develops a model for the behaviour of inclusions on the boundary

between two phases, exploiting a projection technique to reduce the dimensionality of

the problem and thus significantly reduce computational expense by a factor propor-

tional to the ratio of volume to surface area (compared to a uniform volume mesh).

These gains are offset slightly by the additional assembly overhead needed for the pro-

jection. The full model and several simplifications were derived. The properties of the

solution were analysed and characterised. The model is shown to capture mesoscale ef-

fects that lead to coarsening and reproduction of the Gibbs-Thompson effect. An ex-

ample model of grain boundary porosity is shown, which captures the phenomena of

intergranular porosity interlinkage and migration towards edges.

Additional file

Additional file 1: Results of grain boundary porosity simulation showing decomposition of the initial fluctuating
porosity into discrete bubbles followed by coalescence and relocation towards edges and vertices. (MP4 8067 kb)
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