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Abstract 

The investigation of strain hardening in metals is complex, with the outcome depend-
ing on experimental conditions, that may involve microstructural history, temperature 
and loading rate. Hardening is commonly measured, after mechanical processing, 
through controlled mechanical testing, in ways that either distinguish elastic (stress) 
from total deformation measurements, or by identifying plastic slip contributions. In 
this paper, we conjecture that hardening effects can be unraveled through statistical 
analysis of total strain fluctuations during the evolution sequence of profiles, measured 
in-situ, through digital image correlation. In particular, we hypothesize that the work 
hardening exponent is related, through a power-law relationship, to a particular 
exponent arising from principal component analysis. We demonstrate a scaling analysis 
for synthetic data produced by widely applicable crystal plasticity models for polycrys-
talline solids.

Keywords: DIC, Digital Image Correlation, Work hardening, Polycrystals, Crystal 
plasticity, materials informatics, Multiscale modeling
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Graphical Abstract

When a metal is cold worked, through rolling, drawing or forging, mechanical 
strength may increase by orders of magnitude, mainly due to the onset of work 
hardening  (Asaro 1983), where dislocations are formed at grain boundaries or 
interfaces between various coexisting phases. While well exploited, this remarkable 
physical phenomenon cannot be directly predicted, without case-by-case inves-
tigations  (Cottrell 2019). For example, the identification of the work hardening 
exponent requires standardized testing and associated modeling. However, strain 
hardening critically depends on environmental conditions, such as temperature, 
pressure, loads, and especially for extreme conditions (Hosford 2010), one needs a 
large collection of controlled testing that may be impossible (eg. at high tempera-
ture or irradiation conditions). In this context, data science and materials infor-
matics (Frydrych et al. 2021) provides tools for the understanding of strain harden-
ing effects with minimal input from experimental set ups. In this paper, we explore 
the possibility of extracting the strain hardening exponent by the statistical analy-
sis of surface total strain map sequences, that may be extracted through the use of 
digital image correlation (DIC) methods  (Papanikolaou and Alava 2021), that are 
quite common across scales in the study of metal surfaces (Sutton et al. 2009). We 
demonstrate, for synthetic data, that features extracted from principal component 
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analysis (Giannetti et al. 2019) of surface strains during uniaxial tensile loading, can 
be directly associated to the hardening exponent. We propose a functional form 
that can be tested in experimental settings and in general loading conditions.

The characterization of a metal’s ability to deform before fracturing, is typically done 
through various measures of tension tests, such as elongation at fracture, reduction of 
area at fracture, and strain hardening exponent, typically measured from the engineer-
ing yield up to the ultimate yield points. However, all these tests not only depend on the 
very definition of the yield point (engineering/ultimate), but also necessitate a high level 
of control and standardization procedure.

DIC methods  (Sutton et  al. 2009) have emerged as a promising technique for 
materials informatics applications  (Frydrych et  al. 2021). DIC uses specimen sur-
face images taken in the initial and deformed configuration to produce displacement 
and strain fields. DIC is a computationally-intensive technique, but recent progress 
noticed (Papanikolaou et al. 2019; Mäkinen et al. 2020, 2015; Yang et al. 2020; Papan-
ikolaou and Alava 2021) that the evolution of DIC total strain profiles has rich infor-
mation content that may be adequate to infer material properties related to yielding, 
hardening and eigenstrains, but only a small part of it is utilized for various pur-
poses  (Hazeli et  al. 2018). Indeed, one may show  (Papanikolaou et  al. 2019; Papan-
ikolaou and Alava 2021) that the history of deformation of the crystalline sample can 
be used for a robust definition of the yield point, as the plasticity onset point, in a 
way that is solely controlled by the data, without engineering conventions. In fact, 
in Ref. Papanikolaou and Alava (2021), two functional tools were introduced, based 
on principal component analysis (PCA) and discrete wavelet transforms (DWT), that 
were shown to capture the onset of crystal plasticity through the analysis of total 
strain fluctuations during mechanical loading. As a test case, these tools were used 
on DIC of polycrystalline samples, using synthetically produced data in a phenom-
enological crystal plasticity model for pure Al. These methods were confirmed to 
correctly estimate experimental yield stresses in metal alloys  (Mäkinen et  al. 2022). 
Beyond yielding, fracture toughness can be also estimated using DIC, typically using 
artificial neural networks (ANNs)  (Cidade et  al. 2019; Papanikolaou 2020; Rezaie 
et al. 2020). Crack detection, measurement, and characterization based on DIC is also 
done using image processing methods  (Gehri et  al. 2020) and fatigue crack detec-
tion (Strohmann et al. 2021).

In this paper, we focus on polycrystalline metals, analogous to Ref. Papanikolaou and 
Alava (2021), and small quasi-elastic strains ( < 0.3% ), and the ductile features beyond 
yielding. We focus on the identification of the hardening exponent n directly out of total 
strain maps, without the use of local or global stress information. We perform tensile 
loading (along x) simulations in three-dimensional samples of fixed discretization and 
polycrystalline structure, with a phenomenological crystal plasticity model, that incor-
porates well established polycrystalline deformation mechanisms  (Roters et  al. 2019; 
Papanikolaou and Alava 2021). We consider synthetic data of uniaxial tensile mechani-
cal deformation in polycrystalline samples with 5µ m local resolution in each directions 
and grains that are at least 25µ m large in each direction. We vary the microstructural 
hardening exponent by modifying a particular parameter of the model, the slip interac-
tion parameter h0 , which ultimately changes the hardening exponent from 0.001 up to 
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0.3, which is also the typical range seen in experimental data for metals with various 
degrees of cold work (Silva et al. 2018; Hosford 2010). On all the cases, we implemented 
the proposed PCA method  (Papanikolaou and Alava 2021) by using standard tools in 
Python  (Pedregosa et  al. 2011). We show that the plasticity transition is qualitatively 
modified, but the PCA measures still efficiently track the yield point, and they also allow 
for the quantification of the hardening exponent n through a constitutive power-law 
relation. We demonstrate how the constitutive power-law is constructed, and we apply 
it on the existing data. We conclude by discussing the accuracy of the approach and the 
possibility of learning additional properties, such as additional hardening information 
and possibly, damage parameters, but also distinguish various hardening from damage 
mechanisms.

We study tensile loading in the x-direction, for 3D polycrystalline samples that are 
periodic in all directions (see Fig.  1(a), and sample dimensions in (x,y,z): (64,64,64) 
(3D), promoting the perspective of investigating a (0.32mm)2 sub-mm 3D samples. 
The crystalline structure of the material is face-centered cubic (FCC) Aluminum (Al), 
with standard stiffness coefficients (see Table 1, in reference to the cubic coordinates). 
The examples studied can be readily achieved in modern DIC applications  (Sutton 
et al. 2009) and they follow prior relevant works (Papanikolaou et al. 2019; Roters et al. 
2019; Papanikolaou and Alava 2021). The digital surface image collection is assumed 
to be collected at periodic applied strain intervals (cf. Fig. 1(b)). The samples are peri-
odic in all three dimensions, and for this reason, we utilize all possible y-z surfaces for 
DIC sampling purposes. Clearly such surface collections cannot be tracked by using 
typical surface DIC, requiring three dimensional versions, using x-ray tomography. 
However, this work’s impact is solely focused on the demonstration of how surface 
strain measurements can be connected to realistic crystal plasticity effects. The sam-
ples considered in this work display identical polycrystalline texture and similar yield 
points but distinct hardening exponents n (with the stress σ(ǫ) ∝ (ǫ − ǫY )

n ), with the 
slip-slip interaction coefficient h0 being altered from 106 to 1012 Pa, while all other sim-
ulation parameters remained identical (cf. see also, Fig. 1(c)). Each sample corresponds 
to a single hardening exponent n and slip-slip interaction coefficient h0.

Fig. 1 Synthetic data for phenomenological polycrystal plasticity, hardening effects and strain-map 
sequences. (a) A 64x64x64 polycrystalline sample is uniaxially loaded under tension along the x-direction, 
and digital surface image collection is assumed at a 10µm-resolution, assumed to capture a representative 
volume element, (b) Digital image correlation (DIC) strain maps are assumed to be collected at periodic 
applied strain intervals on a y-z plane, (c) The samples considered in this work display similar yield points (see 
Table 1 but distinct hardening exponents n (with the stress σ(ǫ) ∝ (ǫ − ǫY )

n ), with the slip-slip interaction 
coefficient h0 being altered from 106 to 1012 Pa (see legend for symbols correspondence), while all other 
simulation parameters remained identical
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The model (Papanikolaou et al. 2019; Roters et al. 2019) utilizes the phenomenological 
crystal plasticity theory, capturing slip-based macroscale plasticity, with constitutive laws 
that are applicable in common metals  (Asaro 1983). The model captures in a self-con-
sistent manner the basic physical mechanisms of crystal plasticity, as they take place in 
most metals, and it captures finite deformations in a cubic grid (Papanikolaou and Alava 
2021). All studied samples have 256 grains that are distributed randomly using a Voronoi 
tesselation in three dimensions (Press et al. 1989) (see also Fig. 2(a) for a y-z surface set of 
grain orientations) and the model is solved by using a FFT-based method (Papanikolaou 
et al. 2019). The main evolution of the plastic deformation tensor is governed by:

with Lp =
∑

α γ̇
αsα ⊗ nα , and s, n unit vectors on slip direction and slip plane normal, 

respectively, while α is the slip system index. Total deformation translates in elastic and 
plastic ones through F = FeFp . The slip rate γ̇ α is given constitutively through  (Asaro 
1983; Bronkhorst et al. 1992),

(1)Ḟp = LpFp

Table 1 Model parameters chosen in this work. The key parameter h0 is varied for altering the 
hardening exponent

Model Parameters Symbol Value

Dimensions Lx , Ly , Lz 64, 64, 64

Elastic stiffness C11 106.75GPa

Elastic stiffness C12 60.41GPa

Elastic stiffness C44 28.34GPa

Reference shear rate γ̇0 0.001/s

Rate sensitivity exponent m 20

Slip-Slip Interaction h0 ∈ 1, 106 MPa

Slip hardening parameter p 2.25

Saturated shear resistance gs 63MPa

Fig. 2 Polycrystallinity and hardening exponent variability. a Grain orientations on the observed y-z surface, 
perpendicular to the loading-axis x (given the representation through Bunge Euler angles with respect to the 
x-axis projection is cosφ1cosφ2-sinφ1sinφ2cos� ), and the RGB color index being proportional to (φ1,φ2,�) . b 
The observed hardening exponent dependence on the slip-slip interaction parameter h0 for the simulations 
performed in this work, being apparently non-linear. We acknowledge that the observed non-linearity may 
be an outcome of the chosen discretization or/and texture, but its study is not related to the subject of the 
current work
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where γ̇0 is the reference shear rate, τα = S · (sα ⊗ nα) is the resolved shear stress at a 
slip resistance gα , with S = [C]Eǫ being the Second Piola-Kirchoff stress tensor, n) in 
this work (inverse of the strain rate sensitivity exponent m = 1/n ) and gα is the slip 
resistance for a slip system α . Hardening is provided by the constitutive law (Brown et al. 
1989):

where hαβ is the hardening matrix:

which phenomenologically captures the micromechanical interactions between different 
slip systems. Here, h0 = 75MPa, p = 2.25 , and are slip hardening parameters, that are 
typically assumed to be identical for all FCC systems owing to the underlying dislocation 
reactions. gβ is the resistance to shear on the β slip system, and gβ∞ is the saturated shear 
resistance on the slip system β (set at gs = 63MPa for all slip systems, see also Table 1), 
and the shear resistances asymptotically evolve towards saturation. The parameter qαβ 
is a measure for latent hardening and its value is taken as 1.0 for mutually coplanar slip 
systems, and 1.4 otherwise, rendering the hardening model anisotropic.

In this work, we utilize the modification of the slip-slip interaction parameter h0 , as a 
way to control the hardening exponent in this model. As seen in Fig. 2(b), the harden-
ing exponent changes from 10−3 to 0.3, as h0 is varied by 6 orders of magnitude (see also 
Fig. 1(c) for the changes in the stress-strain curves). We sample the following values of 
h0 = 106, 5× 106, 107, 5× 107, 108, 5× 108, 109, 5× 109, 1010, 5× 1010, 1011, 5× 1011, 1012 . Nevertheless, 
the behavior of n is non-linear with h0 (see Fig. 2(b)), but it is clearly expected, given 
the model complexity. For the calculation of n, we utilized the common engineering 
approach of fitting a linear polynomial function to the logarithm of σ − σY  , as function 
of the logarithm of ǫ − ǫY  , with ǫY  set to 0.12, and σY  being set at the value of applied 
stress at 0.12 loading strain.

Our focus in this work, however, is the use of surface strain maps to predict the change 
in hardening exponent. For this purpose, we consider the total strain maps of y-z sur-
faces (perpendicular to the loading direction), at each loading point (seen on Fig. 1(c)), 
having an image of total strain for every recorded loading step in the simulation, emulat-
ing the DIC procedure  (Yang et al. 2020; Papanikolaou 2018). The samples are loaded 
under uniaxial tension along the x-direction. Characteristically, each simulation is com-
posed of ∼ 8000 loading steps, whereas approximately 80 strain maps are considered at 
100-step intervals. These conditions resemble the ones that may be generated by DIC for 
metals under quasi-elastic applied loads (Sutton et al. 2009).

In Ref.  Papanikolaou and Alava (2021), it was demonstrated that the identification 
of the yield point in polycrystals is possible through only total-strain-measurements, 

(2)γ̇α = γ̇0
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without separation of elastic from plastic contributions in total strain profiles, and the 
model studied was coarse-grained and did not capture various details of active deforma-
tion mechanisms (Kubin et al. 1992; Song et al. 2019). The way this feat was accomplished 
in Ref. Papanikolaou and Alava (2021) was through the application of statistical methods 
on the raw total strain map sequences across the elastoplastic transition (Papanikolaou 
et al. 2017). In particular, the use of PCA provided the access to experimentally tracta-
ble measures that utilized the Mahalanobis distance, using the basis of N data vectors 
Ek (capturing the norm |F − I | of total distortion), with predominant correlations in the 
principal directions.

Each Ek is a flattened total-strain vector of N = Lx ∗ Ly , corresponding to an Lx × Ly 
total-strain image (see Fig. 3(b)). The success of the method is gauged by the capacity to 
capture relative fluctuations in just few principal vectors, like the one shown in Fig. 4(b, 
c, e, f ). As can be seen in Figs. 4(a), PCA works well, in the sense that the cumulative 
variance recorded in the datasets is captured by the fluctuations seen in at most 4 singu-
lar components.

Nevertheless, for near-minimum and near-maximum hardening coefficient ( h0 = 1

MPa, and h0 = 106MPa respectively), the plain view of fluctuations seemingly contains 
little information at total strain 0.3% (see Fig. 3(b, e)). Concurrently, Von Mises stress 
fluctuations across the sample (seen in Fig.  3(a, d)) display some differences due to 
the much larger average stress in the sample (see Fig. 1(c)) and the fixed colorbar in 
the figures. However, the plastic distortion Fp is characteristically important for iden-
tifying hardening effects, with the plastic distortion maps (|Fp − I |) having a clear 

Fig. 3 Polycrystalline texture and mechanical response. Samples studied in this work are on 64x64x64 
(3D) grids, with 256 grains in each microstructure. The Von Mises stress surface map for the observed y-z 
plane (having the microstructure shown in Fig. 2(a)) at loading strain 0.3% are shown for h0 = 106 Pa in (a) 
and for h0 = 1012 Pa in (d). The Frobenius norm of the total distortion (defined as |F − I| ) surface map for 
the observed y-z plane at loading strain 0.3% are shown for h0 = 106 Pa in (b) and for h0 = 1012 Pa in (e). 
The Frobenius norm of the plastic distortion (defined as |Fp − I| ) surface map for the observed y-z plane at 
loading strain 0.3% are shown for h0 = 106 Pa in (c) and for h0 = 1012 Pa in (f). Notice that yielding is clearly 
visible in the plastic distortion maps, but not the total distortion ones. Nevertheless, hardening exponent 
differences, when viewed by the human eye, seem to be isolated on plastic distortion signatures near specific 
grain boundaries
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distinction near grain boundaries of yielding grains (compare texture in Fig. 2(a) with 
plastic distortion maps for h0 = 1MPa, and h0 = 106MPa in Fig. 3(c,f ) respectively).

The key conclusion from observing the datasets is that the presence of an always finite, 
superposing, plasticity-dependent elastic contribution completely masks the effects of 
the underlying plastic contribution in strain maps, that unveils yielding and hardening 
effects, keys to plastic localization physics (Asaro 1983). Our findings are also consistent 
to the understanding that strain-gradients developed near high grain-boundary misori-
entations lead to emerging stresses and plastic distortions, instead of actual grain orien-
tations (Chen et al. 2010).

Following Ref. Papanikolaou and Alava (2021), these vectors are projected back to the 
original data vectors through a vector dot product, for datasets that are standardized for 
the same average value (‘0’) and standard deviation (‘1’):

where 〈〉 implies averaging �Ek� = 1/N
∑

i E
(i)
k  and i denotes spatial locations, out of N 

total.
Principal components arise from decomposition of the matrix X = {Ek} for k ∈ {

recorded loading steps} , with N lines and V columns.The covariance matrix can be 
diagonalized C = XTX/(n− 1) = V (�2/(n− 1))V−1 , and C’s V eigenvectors corre-
spond to the principal components, while C’s �2 eigenvalues are the principal values.

(5)Ẽk =
Ek − �Ek�

√

�E2
k � − �Ek�2

Fig. 4 PCA for surfaces of 3D samples. a Principal component cumulative variance of the 
components, showing a saturation to more than 95% of the observed variability by just utilizing 
2 components, in all but one samples, (b) First PCA component for h0 = 106Pa. c Second PCA 
component for h0 = 106Pa. d The projection of the first ( P(ǫ)1  ) and second ( P(ǫ)2  ) components 
on the strain map samples, after normalizing with 

√
σi  where σi is the corresponding singular 

case. Colors and shapes of symbols declare the value of the slip-slip interaction parameter, being 
h0 = [106, 5× 106, 107, 5× 107, 108, 5× 108, 109, 5× 109, 1010, 5× 1010, 1011, 5× 1011, 1012] Pa for symbols: 
{ blue ⊲ ( 106 ), red ⬡ (5× 106 ), green ⋆ ( 107 ), red ◦ ( 5× 107 ), blue ◻ (108 ), yellow ⬡ ( 5× 108 ), purple ◦ ( 109 ), 
red × ( 5× 109 ), cyan 

�
 ( 1010 ), orange ◇ ( 5× 1010 ), blue ⊳ ( 1011 ), light green ⬠ ( 5× 1011 ), light blue 

�
 ( 1012 ) 

}. e First PCA component for h0 = 1012Pa. f Second PCA component for h0 = 1012Pa
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The proposed projection of a component si on one of the data vectors Ẽk is defined 
as the Mahalanobis distances between the principal components i and the total strain 
data vectors k (Papanikolaou and Alava 2021):

As seen in Fig. 4(d), P(k)
1  and P(k)

2  are plotted against each other. In Ref. Papanikolaou and 
Alava (2021), the maximum was identified as a reasonable approximation of the sample’s 
yield point, identified from stress-strain curves. Instead of using an engineering defini-
tion of yield stress, the yield strength of any sample may be uniquely defined as:

In Ref.  Papanikolaou and Alava (2021), the demonstration of an analogous to the 
above-described PCA approach was pursued, using discrete wavelet transforms 
(DWT), designed for capturing localized features in any image. However, in this 
work, we focus solely to the PCA method described above, and we assume that analo-
gous approaches may be applicable through DWT methods.

As seen in Fig. 4(b, c) for h0 = 106 Pa (and hardening exponent n ∼ 0 ), and Fig. 4(e, 
f ) for h0 = 1012 Pa (and hardening exponent n ∼ 0.3 ), the first and second principal 
components are quite different for small and large hardening exponents, showing a 
strong hardening dependence. However, the differences are not trivial to correlate to 
hardening exponent values. For this purpose, we consider the post-yield behavior of 
P
ǫk
(2) , which is fitted to a power-law function, following the ansatz:

with Pm
(2) signifying the maximum value of Pǫ

(2) , and C0, nP2 being fitting constants (see 
also Fig. 5).

When Pǫ
(1) is plotted against Pǫ

(2) (cf. Fig. 4(d)), there is an evident parabolic behav-
ior, which is almost universal across all samples (cf. Fig.  6(a)), something that can 
be noticed when both quantities are plotted with respect to their zero strain value 
P0
i  . This universal parabolic behavior is further confirmed by plotting the absolute 

distance of Pǫ
(1,2) with respect to their maximum value, showing a quadratic behav-

ior (cf. Fig.  7(a)) |P2 − Pm
2 | ∼ (P2 − Pm

2 )2 . In addition, similarly to the results in 
Ref. Papanikolaou and Alava (2021), there is a standard behavior of Pǫ

(1) and Pǫ
(2) with 

respect to the loading strain ǫ , with Pǫ
(1) showing a monotonically decaying behav-

ior (cf. Fig. 6(b)), analogous to order parameters across phase transitions in statistical 
mechanics (see for example, Ref. Papanikolaou et al. (2007); Papanikolaou and Betou-
ras (2010); Papanikolaou et  al. (2014)), and Pǫ

(2) shows a behavior similar to order 
parameter susceptibilities, with a characteristic peak that follows the apparent yield 
point, as shown in Fig. 6(c). Thus, it appears that the definition of the yield point in 

(6)P
ǫk
(i) ≡ P

(k)
(i) ≡ �si|�−1|Ek� =

si · Ek√
σi

.

(7)ǫY |PCA = LOC

{

dP
(k)
2

dǫk
= 0

}

(8)σY |PCA = Cǫy

(9)Pǫ
(2) = Pm

(2) − C0

(

ǫ − ǫPCAY

)nP2
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Eqs. 7, 8 is uniquely defined and in accordance to what one would estimate through 
plain view of the stress-strain behavior.

Ultimately, one can consider the behavior of nP2 with respect to the hardening expo-
nent n, which can be seen in Fig. 7(b) for all samples studied, which shows a power 
law behavior. We conjecture that there is a general constitutive connection between 
the exponents nP2 and n:

with δ ≃ 0.5 (see line on Fig. 7(b)) for the material class studied in this work and C1,C2 
being fitting constants.

In summary, we demonstrated that the identification of the hardening exponent in 
polycrystals is possible through only total-strain surface-measurements, without the 
need to separate elastic from plastic contributions from total strain profiles. The current 
model study serves only to provide a demonstration and is not destined to be directly 
comparable to experimental setups, a topic of interest in a future work (Mammadli et al. 
2024). In the performed simulations, each pixel’s linear dimension can be thought of cor-
responding to 5µ m (the scale of a representative volume element in the microstructure) 
and the linear size of tracked areas approaches 0.35mm. We find that predictability of 

(10)nP2 = C1n
δ + C2

Fig. 5 Method for estimating the hardening exponent by using DIC data: An example. The key aspect of the 
proposed method in this work is the post-yield fit of the decay of the P2 observable, solely calculated from 
experimental surface strain maps. Through the fit, one may estimate the exponent nP2 , which captures the 
decay ( Pǫ2 = Pm2 − c

(

ǫ − ǫPCAY

)n

P2
 ). Then, as follows, a constitutive relation connecting nP2 and the hardening 

exponent, provides the prediction

Fig. 6 PCA and Hardening Behavior: (a) Replotting of Fig. 4(d) with respect to same origin at (0,0), showing 
the universally parabolic behavior for all cases. b Second PCA component Vs. loading strain, showing that 
both peaks and slopes depend on hardening effects, (c) First PCA component Vs. loading strain, with stress 
Vs. strain being visible in the background (right y-axis), for comparison purposes. A clear correlation with 
stress-strain behavior, is seen in the peak of the second PCA component and the decrease of the first PCA 
component, signifying the onset of the elastic-plastic transition

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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the hardening exponent requires , in principle, only a single mechanical test for finding 
the parameters A and n0 in the constitutive law n = A(nP2 − n0)

2 . However, the reduc-
tion of the error in the estimation of these parameters in synthetic data (see Fig. 7(b)), 
demanded the consideration of all possible y-z surfaces in the sample, something pos-
sible due to periodic boundary conditions in all directions. Thus, standard experimen-
tal tests should be capable of matching these conditions. Large-scale features of plastic 
fluctuations, allow the predictability of n, without connecting to the dynamics of plastic-
ity defects, such as dislocations. In fact, The model studied is coarse-grained and does 
not capture detailed deformation mechanisms (Kubin et al. 1992; Song et al. 2019). An 
interesting future direction involves the extension of this method to creep and fatigue 
conditions, that can thus have industrial relevance. In addition, one may find analo-
gous dependencies for damaged specimen synthetic data. It is important to identify the 
dependencies, and relevant scaling functions (Papanikolaou et al. 2017), both being the 
subject of future works.

Abbreviations
DIC  Digital Image Correlation
ANN  Artificial Neural Network
3D  Three-Dimensional
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