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Abstract 

Plasticity modelling has long relied on phenomenological models based on ad-hoc 
assumption of constitutive relations, which are then fitted to limited data. Other work is 
based on the consideration of physical mechanisms which seek to establish a physical 
foundation of the observed plastic deformation behavior through identification of iso-
lated defect processes (’mechanisms’) which are observed either experimentally or in 
simulations and then serve to formulate so-called physically based models. Neither of 
these approaches is adequate to capture the complexity of plastic deformation which 
belongs into the realm of emergent collective phenomena, and to understand the 
complex interplay of multiple deformation pathways which is at the core of modern 
high performance structural materials. Data based approaches offer alternative path-
ways towards plasticity modelling whose strengths and limitations we explore here for 
a simple example, namely the interplay between rate and dislocation density depend-
ent strengthening mechanisms in fcc metals.
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Introduction
Plasticity modelling has long proceeded along two independent lines. On the one hand, 
engineers are seeking tools to predict the behavior of engineering components during 
processing and under in-service loads. In this case, the material is assumed as given and 
the task is to predict, based on available experimental data, as accurately as possible the 
behavior of this material within complex-shaped parts with equally complex boundary 
loadings. This has led to phenomenological models which seek, often with an abundance 
of parameters, to reproduce a set of experimental data as accurately as possible. The task 
of these models is to reproduce the behavior of a given material under a typically rather 
limited range of deformation conditions, and in meeting this task they often achieve an 
impressive degree of accuracy. Their predictive power beyond the material and range of 
deformation conditions for which they have been parametrized, on the other hand, is 
extremely limited. Therefore, materials scientists tasked with the development of new 
and improvement of existing materials tend to use a different approach. By analysing 
deformation on the level of the defect microstructure, they seek to identify the physical 

*Correspondence:   
michael.Zaiser@fau.de

1 Department of Materials 
Science, WW8-Materials 
Simulation, Friedrich-Alexander 
Universität Erlangen-Nürnberg, 
Dr.-Mack-Str. 77, 90762 Fürth, 
Germany
2 Department of Mechanics, 
Sichuan University, Chengdu, 
People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41313-022-00050-y&domain=pdf


Page 2 of 15Hiemer et al. Materials Theory             (2023) 7:1 

mechanisms that control macroscopic features of the plastic deformation process such 
as the flow stress. A mathematical description of the corresponding microstructure-
property relationships, so it is hoped, may provide generic insights that can be used as a 
basis for predictive modelling. But this approach, which is supported by microstructure 
characterization tools of increasing sophistication, is itself beset by pitfalls.

On a most elementary level, the flow stress of a dislocated crystal can be related to the 
density and arrangement of crystal lattice dislocations. This is well established since the 
seminal paper of Taylor (1934) who analyzed crystal plasticity in terms of the motion of 
dislocations and established a fundamental relationship between the flow stress τf – here 
understood as critical resolved shear stress on the active slip system(s) – and the density 
of dislocations ρ , τf = αµb

√
ρ where µ is the shear modulus, b the length of the Burgers 

vector of the active slip systems, and α a numerical factor which was put by Taylor into 
the range of α ≈ 0.2...0.3 where it has remained ever since. However, while the structure 
of the Taylor relationship has never been in question, the precise nature of the disloca-
tion arrangements that give rise to this dependency has been a subject of controversy 
for decades. Taylor considered a checkerboard pattern of positive and negative disloca-
tions (’Taylor lattice’) - an arrangement which, while analytically tractable, has the dis-
advantage that it has never been observed in experiment. Based on surface observations 
(blocking of slip lines), Mott (1953) and Seeger et  al. (1957) proposed that the Taylor 
stress is produced by large pile ups of dislocations at indestructible Lomer-Cottrell Bar-
riers, an idea which, while consistent with surface observations, cannot be reconciled 
with TEM where such pile ups are very hard to find. Bailey and Hirsch (1960) instead 
suggested that Taylor’s law can be explained by the stress needed to cut forest disloca-
tions, whose spacing scales like the square root of dislocation density. Finally, Hirsch and 
Warrington (1961) pointed out that Taylor-type behavior can also be explained by the 
dragging of jogs whose spacing in turn reflects the forest spacing.

The controversies surrounding the mechanism of hardening illustrate an inherent 
weakness in the quest for ’mechanism-based’ interpretations of complex collective phe-
nomena. Virtually all of the above mentioned dislocation configurations and mecha-
nisms (with possible exception of the original Taylor lattice) can be observed in TEM 
imaging, but possible selection bias makes it difficult to quantify their relevance based 
on published data. Another example of the problematics of mechanistic thinking con-
cerns the nature and role of dislocation sources. Every dislocations textbook contains 
images of Frank-Read or spiral sources, and numerous attempts to explain the flow 
stress of materials from the macro to the micro scale are based on the concept of a 
’weakest source’. Yet, while dislocation sources can be observed in TEM, they are sur-
prisingly rare and the actual process of dislocation multiplication does not proceed by 
sequential emission of discrete loops from dislocation sources but in a much more dif-
fuse and mechanistically less tangible manner which, despite recent works such as the 
excellent simulation study of Weygand and co-workers (Stricker et al. 2018), is still not 
fully understood. Thus, even simple and elegant mechanisms on the single-dislocation 
level do not necessarily help to obtain an adequate understanding of the inherently col-
lective and complex dynamics of dislocation networks.

Here we illustrate two alternative approaches towards quantifying the relationship 
between plastic deformation behavior and properties of the dislocation microstructure. 
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High-throughput simulations and experimentation offer the perspective to establish a 
sound data base which allows data analytic methods to be used for identification and 
classification of recurrent features and structures. Mathematical analysis allows to for-
mulate symmetries and invariance principles that reduce data complexity and assist 
in analysis. In the present study, we illustrate these approaches on a simple example, 
namely the superposition of rate and dislocation density effects in controlling the flow 
stress of fcc single crystals.

Data base
High throughput discrete dislocation dynamics (DDD) simulations covering 9 orders of 
magnitude in dislocation density ρ (107m−2 < ρ < 1016m−2 ) and 7 orders of magnitude 
in strain rate ( 10−1s−1 ≤ ε̇ ≤ 106s−1 ) were conducted by Fan and co-workers (Fan et al. 
2021) with the aim of establishing the joint influence of dislocation density and strain 
rate on the flow stress of fcc metals. These simulations were complemented by MD 
simulations of highly dislocated crystals which further extend the range of dislocation 
densities and strain rates to densities of 2.2× 1016 m −2 and strain rates of 2.5× 108 s −1 . 
For each set of parameters multiple simulations with different, but statistically equiva-
lent, initial dislocation configurations were conducted, amounting to a total of about 200 
simulations. In all these simulations the flow stress, defined as the stress at a fixed plastic 
strain εpy , was recorded alongside the imposed strain rate and dislocation density at the 
same strain. A default value εpy = 0.5% was used for the offset plastic strain, though lower 
offsets were considered at the lowest strain rates. In addition to flow stress values, other 
characteristics such as the probability distribution p(v) of dislocation segment velocities 
and the plastic strain pattern at the global strain εpy were determined for all simulations.

The simulations were complemented by an extensive literature search to retrieve 
records where simultaneous measurements of strain, strain rate, flow stress and disloca-
tion density were reported for monocrystalline speciens. This search yielded about 120 
datasets, mostly from the literature of the 1960s to 1980s. Few examples from the recent 
literature could be found, since unfortunately the number of publications which report 
quantitative measurements of dislocation densities alongside mechanical data has over 
the past decades decreased in inverse proportion with the increasing number of plastic-
ity models that use dislocation densities as internal variables. A downloadable compila-
tion of all data can be found in the supplementary material of Fan et al. (2021).

In the following we investigate the performance of different prediction strategies in 
relating the flow stress to parameters such as strain, dislocation density and strain rate. 
As a measure of prediction performance we use the coefficient of determination

which we apply to the logarithm of the flow stress, which we try to predict based on the 
remaining variables. (Note that in view of the range of variation of all variables, which 
encompasses many orders of magnitude in dislocation density, strain rate and flow 
stress, a logarithmic measure is required).

(1)R2 = 1−
i xi − x

pred
i

2

i(xi − �xi�)2
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Predicting flow stresses: superposition of forest hardening and rate effects
We first consider a simple question: How do dislocation interactions and rate-
dependent flow stress contributions, which can ultimately be traced back to the stress 
needed to move dislocations with a given imposed velocity, superimpose in control-
ling the flow stress of fcc metals? In other words, what is the function that relates the 
flow stress σf to dislocation density ρ and strain rate ǫ̇ ? In the literature, there exists 
an abundance of phenomenological relationships introduced by different authors in a 
more or less ad-hoc manner. In particular we mention the form popularized by Meck-
ing and Kocks (1981),

where ǫ̇0 is an arbitrary reference strain rate, α0 an accordingly determined nondimen-
sional factor, µ the shear modulus, and b the Burgers vector length. The exponent m is 
called the strain rate sensitivity. We shall probe the usefulness of this and similar equa-
tions in reproducing data based on a combination of theoretical and data based analy-
sis. (For a discussion of other aspects, such as thermodynamic consistency, see Wu and 
Zaiser (2022)).

Scaling analysis

In the following we show how to exploit generic scaling invariance properties of dis-
location systems in order to establish constraints on the possible form of constitu-
tive laws that connect statistically averaged properties of dislocation systems such as 
stress, strain rate, and dislocation density. The main arguments were for the first time 
formulated by Zaiser and Sandfeld (2014) and are here briefly repeated.

We consider a system of N dislocations i ∈ {1 . . .N } . The dislocation with Burgers 
vectors b i moves by glide on the slip plane P i with slip plane normal ni . The unit slip 
vector is si = b

i/b where b is the Burgers vector length. The dislocations form closed 
loops Ci , each  contained within a single slip plane. These loops are parameterized 
by r(si) with local tangent vector t(si) = dr/dsi . Junctions are described in terms of 
local alignment of segments of different loops. We consider bulk behaviour, i.e., we 
assume that the dislocation loops are contained within a quasi-infinite crystal where 
the boundaries are remote such that image stresses can be neglected, or that the sys-
tem is replicated periodically.

Dislocation motion is assumed to occur by glide and to be controlled by phonon 
drag with drag coefficient B. Thus, the local velocity is given by

where Mi = [ni ⊗ s
i]sym is the slip system projection tensor. The stress is composed of 

an ’external’ stress imposed by remote boundary tractions and considered constant over 
the volume of interest, and a dislocation-related internal stress which can be computed 
in terms of line integrals over the dislocation lines:

(2)σf =
(

ǫ̇

ǫ̇0

)1/m

α0µb
√
ρ

(3)∂r(si)

∂t
= [ni × t(si)]v(si) , v(si) =

b

B
τ i(si), , τ i(si) = M

i : σ (r(si))
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where R = |r − r(sk)| . It is now easy to see that the above equations are invariant upon 
re-scaling by an arbitrary factor � according to

which implies the auxiliary transformations

where the transformation rule for dislocation density follows directly from its defini-
tion as line length per volume. The transformation rule for the plastic strain rate follows 
from its definition in terms of slip rates on the different slip systems, ε̇p =

∑

β M
iγ̇ i , 

where the slip rates γ̇ i = bȦi/V  are products of Burgers vector length and rate of change 
in slipped area per dislocation loop, divided by the system volume.

Crystal plasticity constitutive equations

We now outline some consequences of the above formulated invariance principle. It is clear 
that invariance under the transformation (5) does not depend on any mechanisms or spe-
cific processes, nor does it depend on the scale on which the dislocation system is consid-
ered. Scaling invariance must not only hold on the macroscopic scale, but must also apply to 
any emergent statistical signatures of the evolving dislocation system. This is in well known 
for the characteristic wavelength of dislocation patters, which obeys the so-called law of 
similitude (Rudolph et al. 2005; Sauzay and Kubin 2011) as well as for the mesh length dis-
tribution in fractal dislocation networks (Zaiser and Hähner 1999; Hähner and Zaiser 1999) 
and the distribution of dislocation velocities (Fan et al. 2021). In particular, any constitutive 
equations that derive from the micro-dynamics of interacting dislocations via an averaging 
procedure are bound to possess the same invariance properties. This provides us with a 
useful rule-of-thumb for assessing the validity of phenomenological dislocation-based con-
stitutive equations proposed in the literature. For instance, simple power counting demon-
strates that Eq. (2) is invariant under (5) only in the rate independent limit m → ∞ , and can 
therefore not meaningfully describe rate effects in dislocation plasticity.

Conversely, a useful strategy for formulating constitutive equations is to cast these in the 
form of relationships between invariant parameters that by construction show invariance 
under the transformation (5). We demonstrate this strategy for the superposition of rate 
and dislocation density effects in dislocation plasticity. Thus, we define invariant slip rate 
and dislocation density variables on the different slip systems β via

Similarly, we define invariant stress and strain measures via

(4)

σ = σ
ext + σ

int

σ int
kl (r) =−

µ

8π

∑

k

∫

Ck

{

2

1− ν

(

∂3R

∂rn∂rk∂rl
− δkl

∂

∂rn
∇2R

)

boǫnomtm

+
(

∂

∂rn
∇2R

)

bo[ǫnok tl + ǫnol tk ]

}

dsk ,

(5)r → �r , σ → �
−1

σ , t → �
2t .

(6)v → �
−1v , ρ → �

−2ρ , ε̇
p → �

−3
ε̇
p .

(7)Pβ =
(

µb3

B

)2/3
ρβ

(γ̇ β)2/3
, Ŵ̇β =

B

µb3
γ̇

(ρβ)3/2
= (Pβ)−3/2
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from which invariant shear stresses derive via

Note that we have non-dimensionalized all quantities using the material constants which 
govern dislocation motion and interactions, in order to allow for a material independent 
formulation of constitutive behavior associated with collective dynamics of dislocations.

Next we study asymptotic cases. We note that the slip rates scale on the active slip sys-
tems β are given by γ̇ β = ρβbvβ where ρβ is the dislocation density on a given slip system 
and vβ = γ̇ β/(ρβb) the average velocity of these dislocations.

First we envisage the quasistationary limit vβ → 0 of near-zero strain rates or of very high 
dislocation densities. In this limit the stresses on all dislocation lines asymptotically vanish, 
σ
ext + σ

int → 0 , from which scaling invariance dictates that τβ ∝ √
ρ for all active slip sys-

tems β . In terms of the invariant variable Pβ this behavior is expressed as

where the parameters αβ may depend on the distribution of dislocations over the differ-
ent slip systems as expressed by the ratios f β = ρβ/ρ.

In the opposite limit vβ → ∞ of low dislocation densities or high strain rates, the resolved 
shear stresses acting on the dislocations must become very high. This is only possible when 
the externally applied stresses are high and in the asymptotic limit, the internal stresses are 
asymptotically irrelevant. Thus, in the asymptotic limit vβ = γ̇ β/(ρβb) = τβB/b . From 
this relation we obtain

An equivalent formulation is of course possible by substituting Pβ = (Ŵ̇β)−3/2 . A generic 
constitutive law must interpolate between the asymptotic limits given above. The sim-
plest way to do so is to simply add up the asymptotic expressions, as proposed by Fan 
et al. (2021):

Equation (11) is compared in Fig. 1 with the data of Fan et al. (2021), who in their simu-
lations consider uniaxial tensile tests of Cu and Al deformed in [100] orientation, and 
with experimental data referring to uni-axial tests compiled from the literature (Fan 
et  al. 2021) which have been corrected for orientation factors. It can be seen that the 
simple relationship (11) provides an acceptable description of the data. We measure pre-
diction performance in terms of the coefficient of determination

(8)�ρ =
σ

µb
√
ρ

, �γ̇ =
σ

µ1/3(Bγ̇ )2/3
, Ŵβ =

γ β

bρ1/2
.

Tβ
ρ = M

β : �ρ , Tγ̇ = M
β : �γ̇ .

(9)T
β
γ̇ = αβ(Pβ)1/2 , Tβ

ρ = αβ , Pβ → ∞, Ŵ̇β → 0.

(10)T
β
γ̇ = (Pβ)−1 , Tβ

ρ = (Pβ)−3/2 , Pβ → 0, Ŵ̇β → ∞.

(11)T
β
γ̇ = (Pβ)−1 + αβ(Pβ)1/2 , Tβ

ρ = αβ + (Pβ)−3/2 = αβ + Ŵ̇β .

(12)R2
τ = 1−

∑

i

(

ln τi − ln τ
pred
i

)2

∑

i(ln τi − �ln τi�)2
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where τi are the individual flow stress values within the set to be predicted, 〈ln τi〉 is their 
logarithmic average, and τpredi  are the predicted values for τi . Note that we use logarith-
mic quantities (i.e., we consider relative deviations) to ensure that all stress values in 
datasets which typically span 4-5 orders of magnitude are weighted equally (not doing so 
would imply that our performance measure is dominated by the largest stresses).

For our entire set of data (simulation and experiment), a fit of Eq. (11) results in a high 
coefficient of determination ( R2 = 0.958 ). However, it is clear that the simple expression 
(11) is not the only possible form of a constitutive law that is consistent with scaling. For 
example, the transition regime between the asymptotic regimes might be represented by 
a modified scaling law which leaves the asymptotics unchanged, such as

Fitting this law to all data produces a slightly improved fit ( R2 = 0.967 ) as shown in 
Fig. 2.

Importantly, Eq. (13) implies a different leading-order strain rate dependency of 
flow stress in the regime of low strain rates. Equation (11), which has been used often 
in the literature, predicts that the strain rate increases linearly with the ’effective stress’ 
τ
β

eff = τβ − αβµb
√

ρβ  , provided that the resolved shear stress exceeds the friction-like 
’Taylor stress’ : γ̇ ∝ τ

β

eff if |τβ | ≥ αβµb
√

ρβ  . Equation (13), on the other hand, predicts 
a nonlinear increase, γ̇ ∝ (τ

β

eff)
1/η , as has been reported in simulations, see e.g. Miguel 

et al. (2002).

Machine learning
In the following, we study the performance of different machine learning methods in 
predicting flow stresses (resolved shear stresses) based on dislocation density, strain 
rate, and strain as well as essential materials parameters (shear modulus, dislocation 

(13)Tβ
ρ = αβ + Ŵ̇β + δ(Ŵ̇β)η.

Fig. 1 Comparison between the scaling function, Eq. (11) (dashed lines) and data describing the 
dependency of flow stress on strain rate and dislocation density; materials and type of data (discrete 
dislocation dynamics simulation - DDD, molecular dynamics simulation (MD), or experiment (Exp.), are 
indicated in the legends; figure reproduced after Fan et al. (2021)
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drag coefficient, Burgers vector length). The scaling analysis presented in the previous 
paragraph serves as a benchmark for prediction performance. All features and targets 
were logarithmically transformed and standardized before training, testing and predic-
tion. Specifically, to ensure comparability between simulation and experimental data, 
experimental resolved shear stresses determined for some material X deformed in [hkl] 
orientation with Schmid factor M[hkl] were referred to Cu deformed in [100] orienta-
tion by multiplication with the ratio of Schmid factors, M[100]/M[hkl] and with the ratio 
of shear moduli, µCu/µX . Similarly, strain rates were referred to [100] deformed Cu by 
multiplication with the inverse ratio of Schmid factors, M[hkl]/M[100] , and the ratio of 
drag coefficient over Burgers vector, bCuBX/(bXBCu) . Drag coefficients were taken from 
the experimental studies compiled by  Fan et  al. (2021); where possible, data obtained 
from pulse loading of single dislocations were used. No other pre-processing of the data 
was performed, in particular, we did not use transformation to scaling invariant param-
eters as in Eqs. (7, 8).

ML methods

To analyze the data, we use three different methods, namely kernel ridge regression 
(KRR), a decision tree, and a simple neural network. This choice covers different classes 
of machine learning approaches: i) KRR is representative for kernel approaches (sup-
port vector regression, kernel principal component analysis coupled to other regressors, 
etc.) and memory/instance based regressors (k-nearest neighbors); ii) decision trees 
cover tree based approaches (gradient boosted trees, random forests, etc.); iii) the mul-
tilayer perceptron covers for neural networks, we use this type because our data are not 
images (which rules out convolution based neural networks) and have no graph struc-
ture (which rules out graph neural networks). The purpose is to analyse generic issues 
of the application of ML approaches to dislocation problems that are not specific to the 
class of ML model used.

Fig. 2 Fitting the data of Fig. 1 with a modified law corresponding to a different asymptotic strain rate 
exponent; data points: all data in Fig. 1, right; red curve: best fit according to Eq. (11), blue curve: best fit 
according to Eq. (13), fit parameters see legend
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Kernel ridge regression is a memory based method that makes predictions for a new 
data point xi through its similarity to samples in the training set xj . Similarity is quanti-
fied by a kernel function k and a distance d(xi, xj) , such that new predictions are made by 
a linear combination of weighted kernel functions

γ is here a generic kernel parameter. The weights w are inferred by minimizing an L2 reg-
ularized least squares problem which yields a closed form solution (Bishop and Nasrab-
adi 2006). We use the standard Euclidean distance and the radial basis function kernel. 
The regularization parameter is varied between 10−5 and 105 with one hundred loga-
rithmically even spaced increments as well as the kernel parameter γ . The combination 
with the best performance in the test set is chosen as final parameter set. Decision trees 
partition the feature space in greedy fashion and make predictions through the average 
value of training points within the partition to which a new data point xi is assigned. 
This partitioning is done in a sequential per-feature manner. The maximum tree depth, 
minimum number of samples per partition and minimum number of samples to induce 
a split are tested with values 2n, 1 ≤ n ≤ 5 by exhaustive combination. The final model is 
a multilayer perceptron. Here the model is a set of stacked layers consisting of individual 
units/neurons with the nonlinear activation function f(x). Each neuron (i, j) is connected 
to all units (i − 1, k) of the previous layer via a weighted connection of weight w and is 
further modified with a bias b. The intermediate value in the i-th layer on the j-th neu-
ron then is given by

Weights and biases are trained in a stochastic gradient approach via backpropagation. In 
this work the architecture is kept very small due to the limited number of samples: The 
structure is varied between two to four layer depth with a width of ten neurons. We test 
both the relu and sigmoid activation functions. Training is done with the Adam stochas-
tic optimizer (Kingma and Ba 2014). For more details on KRR, the interested reader is 
referred to the book of Bishop and Nasrabadi (2006), whereas for the other methods we 
refer to the standard textbook of Hastie et al. (2009). For KRR and the decision tree, the 
scikit-learn package was used (Pedregosa et al. 2011) while for the multilayer perceptron 
the Keras library was used with Tensorflow as backend (Chollet et al. 2015; Abadi et al. 
2015).

Training schemes

Our data base collates data from different sources (experiment, simulation) and contain-
ing different features. In our ML study, we used different training schemes which dif-
fer in the manner how the data base is divided into training and test data, and in the 
features which are actually being used by the ML algorithms for flow stress prediction. 
These training schemes are compiled in Table 1. The first training scheme follows the 
classical idea of building a model based on simulation data and then validating it based 

(14)yi =
N
∑

j

wjk(d(xi, xj), γ ).

(15)zi,j = f

(

∑

k

[bi,j + wk ,jzi−1,k ]
)
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on experimental data. The second scheme uses all data and splits them randomly into 
subsets for training and testing. Schemes 3 and 4 work similarly, however, Scheme  3 
considers only experimental data for training and testing, and Scheme 4 considers only 
simulation data. All schemes are considered in two versions, one including plastic strain 
among the features used for training and prediction and the other discarding the strain 
feature.

ML results

In our first training scheme we use the simulation data as training data and use the 
experimental data for testing (or validation), following the classical scheme of using 
experimental data to validate a model based on theory or simulation. In this case, a fit 
of the simulation data using Eq. (12) allows to reproduce the actual values with a coef-
ficient of determination of R2 = 0.972 , i.e., the fit is slightly better than for the case con-
sidered in the previous section where all data were used for fitting. This value provides 
our benchmark for the ML algorithms. The same parameters then reproduce the experi-
mental data with a value of R2 = 0.782 , indicating that the scaling analysis captures the 
experimental data well but also showing that the agreement is not perfect. A comparison 
of the scaling predictions and actual values for this training strategy is shown in Fig. 3, 
top left, using different symbols for predictions related to experimental and simulation 
data.

The reduced reliability in predicting simulation data is to be expected, since the simu-
lations represent highly idealized situations where deformation is controlled by dislo-
cation interactions and dislocation drag alone, whereas the experiments are necessarily 
influenced by presence of other defects such as impurities or point defects, even though 
only experiments using single crystal specimen were considered. In line with this argu-
ment, deviations are strongest in the regime of low flow stresses, where the relative 
influence of such confounding factors is highest and accordingly the scaling prediction 
tends to underestimate the actual flow stress. However, the crucial question is whether 
the simulations correctly represent the essential aspects of the reality which underlying 
the experimental data, which is mathematically reflected by the scaling relations which 
we have formulated, such that the additional influences can be considered as added 
noise. Alternatively, it might be possible that the additional factors entering the experi-
ments are essential in the sense that the experiments reflect a fundamentally more com-
plex reality which cannot be adequately represented in the simplified simulation setting. 
Machine learning approaches offer a new perspective on this fundamental question, 
which we explore in the following.

Table 1 Training schemes used in our ML study; scheme variants labeled with an asterisk exclude 
the plastic strain from the considered features

No. training data test data features

1/1* all simulation data all experimental data ρ , γ̇ , (εp)

2/2* subset of all data ( 88%) subset of all data ( 12%) ρ , γ̇ , (εp)

3/3* subset of experimental data ( 84%) subset of experimental data ( 16%) ρ , γ̇ , (εp)

4/4* subset of simulation data ( 90%) subset of simulation data ( 10%) ρ , γ̇ , (εp)
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If we apply the same training scheme 1 but replace the scaling fit by a machine learn-
ing algorithm, the results are at first glance quite disastrous (Fig. 3, top right). The R2 
values compiled in Table 2 indicate that, while notably the perceptron algorithm is able 
to well reproduce the simulation data it has been fed, the performance of the trained 
algorithms in reproducing the test (experimental) data is either low ( R2 < 0.5 ) or non 
existing ( R2 < 0).

In order to establish the reasons for this poor performance, we first look at the fea-
ture set provided to the algorithms. In this set, one variable (the plastic strain) is not 
actually used in the scaling analysis. This is in line with the materials physics idea that 
plastic strain is not a meaningful variable characterizing the internal state of a material. 
Of course, plastic strain can nevertheless be related to flow stress IF the initial state of 
the material (the initial dislocation density) is known, and evidently flow stress tends to 
increase with plastic strain in a strain hardening material. However, here the problem is 

Fig. 3 Comparison of the performance of different prediction strategies, for description of the different 
training schemes, see Table 1, for the respective prediction scores, see Table 2; full symbols refer to the ability 
of a scheme to reproduce training data, open symbols illustrate the ability of a scheme to reproduce test 
data, each data point corresponds to the actual value and predicted value for one data record
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exacerbated by the fact that the plastic strains in the dislocation dynamics simulations 
are quite small (typically 0.2%) and no systematic study of strain hardening has been 
conducted, whereas in the experiments strains may be much larger but data stem from a 
wide range of sources where initial conditions may differ. Thus, the training (simulation) 
and test (experiment) data show poor overlap and non-systematic coverage in feature 
space as far as this variable is concerned.

If we remove plastic strain from the feature set in a modified training scheme 1*, the pre-
dictive power of the ML algorithms increases (Fig. 3, center left). First of all, the ’training’ 
performance is improved as most algorithms obtain better scores in reproducing the simu-
lation data. Second, now all algorithms achieve positive prediction scores ( R2 > 0 ) for the 
experimental (test) data, though their performance still falls below the performance of the 
scaling analysis. It is therefore fair to call the plastic strain in the present context a con-
founding variable.

Even if plastic strain is removed from the feature set, the limited overlap of training and 
test data in feature space remains a problem that can cause poor prediction performance. 
Looking at Fig. 1, we see that the parameter range covered by the simulations corresponds 
to an interval of lower P parameters than that of the experiments. The reason is that simula-
tions are typically conducted at much higher strain rates than experiments. This is a simple 
consequence of the required effort: The computational effort to conduct a DDD simula-
tion increases tremendously with decreasing strain rate, because the numerical stiffness of 
the simulations increases. The reason is that the simulation time step is controlled by the 
motion of fast nodes on close, strongly interacting dislocations, and therefore only weakly 
strain rate dependent, whereas the overall simulated time to reach a given strain is inversely 
proportional to the imposed strain rate. In experiment, the opposite is true: While a low 
strain rate of, say, 10−5 s −1 is completely standard in a tensile test, achieving a high strain 
rate > 104 s −1 in controlled test requires non standard equipment and significant effort.

To resolve the problem of poor overlap of training and test data in feature space, we devise 
a second training scheme (’training scheme 2’) where training and test data are chosen ran-
domly from the pool of all datasets, ensuring an approximately equal coverage of feature 
space by the training and test data. As seen in Fig. 3, center right, this leads to an improved 
performance which now matches the results of the scaling analysis. This is also manifest 
from the R2 values compiled in Table 1 for this training scheme: First, the improved overlap 

Table 2 Values of coefficient of determination for the different prediction algorithms and training 
schemes; schemes with asterisk do not consider the plastic strain for prediction, note that the 
scaling fits which serve as reference do not consider plastic strain

training scaling fit kernel ridge decision tree perceptron

scheme training test training test training test training test

1 - - 0.388 - 0.45 0.879 0.430 0.989 -2,32

1* 0.972 0.782 0.961 0.514 0.963 0.237 0.988 0.202

2 - - 0.988 0.958 0.990 0.927 0.958 0.946

2* 0.967 0.944 0.937 0.955 0.994 0.958 0.948 0.957

3 - - 0.989 0.902 0.975 0.907 0.954 0.847

3* - - 0.994 0.890 0.977 0.881 0.909 0.822

4 - - 0.994 0.996 0.997 0.988 0.995 0.996

4* - - 0.996 0.996 0.997 0.987 0.998 0.996



Page 13 of 15Hiemer et al. Materials Theory             (2023) 7:1  

of training and test data ensures that also the scaling fit works better in reproducing the 
test set. Second, now all machine learning algorithms achieve comparable prediction per-
formance for training and test data, and this performance matches the results of the scal-
ing analysis. This provides evidence that the data derived from simulation and experiment, 
even though they tend to be located in different areas of parameter space, share a common 
underlying structure and that this structure is well captured by the scaling analysis.

This conjecture is further corrborated when we consider training schemes that con-
sider either only experimental data for training and testing (scheme 3) or only simulation 
data (scheme  4). The performance of scheme  3, which considers only experimental data 
(Fig. 3, bottom left) is worse than that of scheme 2 (all data). This can be understood that, 
while the data share a fundamentally similar structure, the experimental data are more 
noisy. Accordingly, the best performance is achieved by scheme 4 (only simulation data) as 
shown in Fig. 3, bottom right, where the data show near-perfect predictability irrespective 
of the algorithm used – a result of the highly controlled and highly idealized nature of the 
simulations.

Discussion and Conclusions
The present example is simple and surely not a critical test of the potential of machine 
learning approaches – after all, we are dealing with the representation of a compara-
tively simple functional relationship in a low-dimensional parameter space. Neverthe-
less, it illustrates some of the chances and pitfalls that arise in the interplay between 
high-troughput simulation, experiment, and machine learning.

The first and obvious conclusion points to the necessity of ensuring adequate over-
lap between simulation and experiment, reflecting the observation that most machine 
learning approaches are better at interpolation than at extrapolation (Webb et  al. 
2020). This can be facilitated by carefully analysing the mathematical structure under-
lying the simulations: our scaling analysis actually demonstrates that a discrete dis-
location dynamics simulation at high strain rate and high dislocation density may be 
equivalent to one at lower strain rate and lower dislocation density. Recognizing this 
fact can evidently accelerate the exploration of parameter space and allows to cover, 
at the same cost, a wider range of parameters. More generally speaking, it is helpful 
to exploit any symmetries in the mathematical formulation of the simulation prob-
lem, of which the scaling relations studied here are a nontrivial example. In our work 
on machine learning approaches to materials mechanics, we generally observe the 
importance of accounting for symmetries as well as symmetry breaking phenomena. 
Examples include the breaking of the translational symmetry of space due to strain 
localization in the run-up to creep failure (Biswas et al. 2020), and the use of feature 
functions of reduced symmetry for predicting bond breaking in statistically isotropic 
glasses under axial load (Font-Clos 2022).

If these caveats are addressed, our little study demonstrates that machine learning 
approaches can correctly infer relationships between simulation and/or experimen-
tal data and can thus be used to represent constitutive relationships governing mate-
rial behavior. Because this representation is not governed by inherent biases such as 
physically unmotivated traditions regarding the structure of constitutive laws (see Eq. 
(2), they may in fact do a better job than many human researchers (Hiemer and Zapperi 
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2021). The presented study also illustates that it is even possible to use both kinds of data 
(simulation + experiment) in conjunction, such as to achieve comprehensive coverage 
of parameter space, provided that there is reason to believe that the simulations capture 
essential aspects of the experimental reality. Moreover, by comparison of different train-
ing schemes it is possible to check, even without recourse to theoretical arguments (here 
provided by our scaling analysis) whether or not this conjecture is valid.
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