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Abstract

Molecular science is governed by the dynamics of electrons and atomic nuclei, and by
their interactions with electromagnetic fields. A faithful physicochemical
understanding of these processes is crucial for the design and synthesis of chemicals
and materials of value for our society and economy. Although some problems in this
field can be adequately addressed by classical mechanics, many demand an explicit
quantummechanical description. Such quantum problems require a representation of
wave functions that grows exponentially with system size and therefore should
naturally benefit from quantum computation on a number of logical qubits that scales
only linearly with system size. In this perspective, we elaborate on the potential
benefits of quantum computing in the molecular sciences, i.e., in molecular physics,
chemistry, biochemistry, and materials science.
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Introduction
Quantum computing promises exponential speedups over traditional computing for cer-
tain computational problems (Shor 1999; Abrams and Lloyd 1999; Harrow et al. 2009;
Childs et al. 2003; Kassal et al. 2008; Montanaro 2016; Cao et al. 2019; Emani et al. 2021;
Outeiral et al. 2021). Although recent developments in quantum hardware and algorithms
(Low and Chuang 2019; von Burg et al. 2021; Lee et al. 2020; Pino et al. 2020; Google AI
Quantum and et al. 2020; Arute et al. 2019; Zhong et al. 2020) are impressive, a poten-
tial quantum advantage has only been demonstrated for toy problems (Arute et al. 2019;
Zhong et al. 2020; Pednault et al. 2019). Looking to the future, it will be crucial to demon-
strate a quantum advantage for problems of scientific or industrial relevance that are
legitimately intractable by traditional computing. This prospect justifies the enormous
financial investment needed to realize universal quantum computation.
An exponential rather than polynomial quantum speedup is the natural target for cur-

rent developments as it allows one to clearly define an application that hits a wall in
traditional computing due to the curse of dimensionality. However, it is important to note
that exponential speedup is promised only by a very limited number of quantum algo-
rithms (Jordan 2021), of which one is the simulation of quantum systems (Abrams and
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Lloyd 1999; Nielsen and Chuang 2010). Further quantum algorithms have been developed
in recent years that achieve a polynomial speedup. However, as a single classical GPU chip
can have a factor of 1010 better performance in bit and floating-point operations than a
single quantum chip, (Häner et al. 2020; Troyer 2021) the latter will be more difficult to
show a clear advantage over traditional computing.
Molecular science is a key application area for quantum computing as the quantum

dance of electrons and nuclei in molecules occurs on the nanometer scale, and must
be described by a quantum model. Despite this tiny scale, molecular events can have
a dramatic macroscopic impact as highlighted by key chemical processes in nature and
industry such as (i) nitrogen fixation and fertilizer production, (ii) photosynthetic light
harvesting and photovoltaic cells, and (iii) bio-macromolecular chemistry and polymer
materials.
While the possibility to describemolecular phenomena in terms of quantum algorithms

was shown some time ago (Lloyd 1996; Aspuru-Guzik et al. 2005; Veis and Pittner 2010;
Cao et al. 2019; Bauer et al. 2020), we demonstrated in 2016 that quantum computing
may actually have the potential to solve relevant chemical problems such as nitrogen fixa-
tion catalysis because the resources required are feasible in terms of the size of a machine
and the time scale required for a calculation (Reiher et al. 2017). Recently, we extended
this work with respect to further algorithmic development and application range
(von Burg et al. 2021). Whereas our work has been based on theoretical analyses only,
actual quantum computations have already been carried out in pioneering work for
molecular toy systems (O’Brien et al. 2019b; O’Brien et al. 2019a; Nam et al. 2020; Kan-
dala et al. 2017; Google AI Quantum and et al. 2020; Kawashima et al. 2021). At the same
time, traditional algorithms in classical computing have become very mature and efficient
in the past decades and present a clear challenge as competing approaches to quantum
computing.
In this perspective, we provide a broader view on typical problems in the molecular

sciences that are important targets for quantum algorithms and we also discuss tradi-
tional approaches to tackle them. We attempt to assess what is currently known about
the potential of quantum algorithms to replace traditional approaches on both near-term
and future quantum devices. We also elaborate on the criteria that eventually allow one to
assess the advantage of quantum computing over traditional computing in this context.

Computational challenges inmolecular science
We begin our discussion with an overview of key problems in the physical descrip-
tion of phenomena in chemistry and materials science. Obviously, we have to condense
these broad fields to key physical effects connected to relevant applications. However, we
emphasize that due to the general nature of physical models, our analysis can be gener-
alized to similar problems (not only in the molecular sciences) in which the same type of
physical modelling is applied.
Table 1 provides an overview on relevant problems in the molecular sciences:
(1) Molecular structure prediction comprises static as well as dynamic procedures that

assign an energy to a given set of Cartesian nuclear or ionic coordinates and hence make
them comparable in terms of this energy, which eventually allows one to search for the
lowest-energy structure.
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(2) Related to the energy assignment in (1) is the sampling of very many structures of a
system undermacroscopic constraints such as constant temperature, volume, and particle
number in order to access microstate energies that are relevant for the partition function
and hence for thermodynamic quantities such as the free energy.
(3) Also related to (1) is tracking the energy along a structural change that describes

a chemical reaction, which requires a quantum description of the electrons in order to
accurately adapt to any of the nuclear scaffolds that might be visited along such a reactive
trajectory.
(4) Naturally, this may also occur in an electronically excited state accessible by light

irradiation, which requires the calculation of more than the lowest energy eigenvalue of
the electronic Schrödinger equation.
(5) Whereas the preceding problems typically rely on the stationary Schrödinger

equation, some processes may require explicit dynamics of the elementary particles (elec-
trons and nuclei in this case) and, therefore, their quantum dynamics must be studied
explicitly.
(6) In the last column of Table 1 we added a branch of computational science that

is rather unrelated to a specific underlying mechanical theory: data-driven cheminfor-
matics which has been propelled recently by developments in machine learning and
artificial intelligence, for which traditional as well as quantum algorithms have been
advanced.
Key to the understanding of all of these application areas is that the molecular pro-

cesses are reduced to the dynamics of electrons and nuclei or to that of entities composed
of them (i.e., atoms and molecules). The energy assignment is typically done in terms of
the electronic energy emerging from the Born-Oppenheimer approximation that freezes
out the motion of the nuclei, which are much heavier than electrons. This energy can
either be supplemented with quantum corrections for the motion of the atomic nuclei
by solving the Schrödinger equation including the nuclei or through Newtonian dynam-
ics in a classical approximation. In the latter context, the electronic energy may be
efficiently approximated for certain problems by a force-field (FF) to enhance com-
putational efficiency and sampling – in particular, for large, heterogeneous atomistic
structures.
In traditional computing, computational efficiency often compromises accuracy. How-

ever, depending on the question to be answered by computer simulation, a computational
result may have modest accuracy requirements. An issue in this context is that most
of traditional algorithms, especially those without hierarchical approximations, involve
uncontrolled approximations and thus do not supply rigorous error bounds. We empha-
size this aspect of traditional methods because rigorous error estimates are available in
certain quantum algorithms. In Table 1, we provide typical accuracy requirements for the
target quantities.

Principles of quantummany-Bodymethods
The ultimate goal of computational molecular science is to solve the time-dependent
Schrödinger equation,

H|�(�r1, ..., �rN , t)〉 = i�
∂

∂t
|�(�r1, ..., �rN , t)〉, (1)
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accurately, where |�〉 may be taken as the N-electron wave function after the Born-
Oppenheimer approximation is introduced. The time dependence can be treated sepa-
rately as long as the Hamiltonian does not depend on time,

H|�(�r1, ..., �rN )〉 = E|�(�r1, ..., �rN )〉, (2)

and we are most interested in the electronic energy E (and in many cases, in the ground
state energy, E0) of a molecular system. Equation 2 is hard to solve exactly, as it is a
3N-dimensional linear second-order partial differential equation (PDE) for N electrons.
A standard approach to solve such an equation is through basis set expansion. It is the
dimension of this many-electron basis function space that scales exponentially with the
size of the system, e.g., with the particle number N.
In the past decades, tremendous achievements have been made in developing approx-

imate traditional methods for solving this equation for chemical systems, aiming to
balance accuracy with computational feasibility. Methods that scale polynomially, such
as density functional theory (DFT) (Hohenberg and Kohn 1964; Kohn and Sham 1965;
Kohn et al. 1996) and coupled-cluster (CC) (Purvis III and Bartlett 1982; Piecuch et al.
2002; Bartlett and Musiał 2007), have been widely used to determine approximations to
the ground state energy of chemical systems.
While these methods are rooted in different foundations, some common ground

has been established to make Eq. 2 solvable for chemical systems: 1) We use a finite
one-electron basis, e.g., atomic Gaussian basis functions, for the construction of the
many-electron basis states and 2) a single Slater determinant (antisymmetrized Hartree
product) is an example of such a many-electron basis state and usually taken as a starting
point to systematically approximate the many-electron wave function.
Among approximate classical methods, DFT is used most prevalently for evaluating

ground state energies of molecules involving any elements from the periodic table and
homogeneous materials such as metals and semiconductors. Its relatively low scaling of
aroundO(m3) with respect to the numberm of one-electron basis functions enables rou-
tine calculations of chemical systems with up to about a thousand atoms. The calculated
ground state energies can be directly used to answer questions related to process thermo-
dynamics or reaction kinetics, although their accuracy remains somewhat obscure due to
the approximate nature of the so-called exchange-correlation energy functional that must
be selected.
In addition, its single-configuration nature, i.e., the fact that only one determinant rep-

resents the many-electron state, also prevents it from delivering accurate energies for
systems that require a more complicated wave function ansatz as a superposition of
many electronic configurations, i.e., many determinants beyond a single Slater deter-
minant. This poses severe challenges for standard Kohn-Sham DFT in a wide range of
strongly correlated systems such as molecular systems with one or multiple transition
metals, bond breaking and transition states, light-matter interaction, and, in practice, may
require the adoption of some sort of symmetry breaking (typically, that of spin symmetry)
(Sinnecker et al. 2004).
The straightforward way of solving strongly correlated systems would be to expand the

total wave function into a complete many-electron basis, i.e., as a linear combination of
all possible Slater determinants that can be constructed in a given one-electron basis:
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|�〉 = c0|ψ〉 +
∑

ia
cia|ψa

i 〉 +
∑

ijab
cijab|ψab

ij 〉 + ... (3)

with expansion coefficients c (the so-called configuration interaction (CI) coefficients)
that parametrize the state. Inserting Eq. (3) into Eq. (2) turns the time-independent
Schrödinger equation into a matrix eigenvalue problem,

HC = CE, (4)

where H,C,E are the matrix representations of the Hamiltonian, the CI coefficients, and
energies, respectively. This is also referred to as “Full Configuration Interaction” (FCI). In
practice, the exact solution of the FCI problem is only possible for rather small chemical
systems (i.e., those with less than about 18 spatial orbitals) on classical computers (Fdez.
Galván and et al. 2019). This is due to the exponential scaling of storing the wave func-
tion with respect to the number of orbitals, even when using subspace methods such as
Lanczos or Davidson algorithms (Lanczos 1952; Davidson 1975).

Quantum and traditional algorithms for molecular science
Energy evaluation

Quantum phase estimation and its traditional rivals

As total electronic energies are the basis for any theoretical description of molecular sys-
tems, to calculate them with known accuracy is of decisive importance. Given that the
exponentially scaling wall in FCI calculations can be overcome by quantum computing,
we first discuss how quantum algorithms can deliver such exact energies (i.e., eigenvalues
of the FCI problem in a given orbital basis).
The quantum phase estimation (QPE) algorithm (Abrams and Lloyd 1999; Nielsen and

Chuang 2010) offers an alternative approach to solve the FCI problem on a quantum
computer with a controllable error. Note the key feature that the error of the FCI energy
(in a given one-electron basis) will be controllable for a specific system under consider-
ation unlike in almost all traditional approaches to the electronic structure problem. In
QPE, one chooses a trial state |�trial〉, a target error ε in the eigenvalue estimate, and a
desired success probability p. The algorithm, which costs n = O

(
poly(N)

ε
log(1/p)

)
quan-

tum gates, then returns an estimate Êj of a randomly selected eigenstate H|�j〉 = Ej|�j〉.
This estimates satisfies

Pr
[
|Êj − Ej| ≤ ε

]
≥ 1 − p. (5)

Importantly, the eigenvalue Ej is sampled with a probability pj = |〈�j|�trial〉|2. If ground
state energies are desired, then |�trial〉 should be chosen to make p0 reasonably large.
The performance of QPE may be compared to the classical power (subspace) iteration

algorithm. Power iteration multiplies |�trial〉 by the Hamiltonian (shifted by the identity
to have only negative eigenvalues) n times using neO(N) classical operations. The result-
ing normalized quantum state is then |�〉 ∝ Hn|�trial〉. Given a target gap parameter δ,
and choosing n = O

( 1
δ
log(1/p)

)
, this state is guaranteed to have an overlap of at least

1 − p with the subspace spanned by eigenstates of H within δ of the ground state. If the
energy gap of the Hamiltonian is larger than δ, the exponential convergence of p allows
the ground state energy to be computed with logarithmic cost in error.
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On quantum computers, the storage requirements (i.e., the number of qubits) for the
wave function is polynomial in the number of orbitals. But as a trade-off, the proba-
bility pj of sampling the desired quantum state |�j〉 means that QPE algorithms need
to be repeated O(1/pj) times, and the cost of the algorithm n scales inversely with
the precision of the energy estimate. In contrast, power iteration simply increases n =
O

( 1
δ
log(1/(pjp))

)
to ensure large overlap with the desired subspace. Moreover, once |�〉

is computed, its expected energy 〈�|H|�〉 may be computed exactly in a single step. In
other words, QPE achieves an exponential improvement in terms of the particle num-
ber N for the number of operations required to obtain the energy of a randomly sampled
eigenstate. The downside, however, is worse scaling with pj when a specific eigenstate is
targeted.
Note that, although subspace FCI provides exact solutions for a quantum many-body

problem in a given one-particle basis (be it the electronic or the nuclear Schrödinger
equation in a basis of orbitals or modals, respectively) and it has certain similarities to
QPE, such a method should not be used as a benchmark or metric to assess the advantage
of quantum algorithms. Subspace FCI is commonly not used in routine chemistry appli-
cations due to its very restricted size of the affordable one-particle basis and because of
the fact that reliable relative energies may not require ultimate accuracy of total energies.
In the spirit of FCI, many lower-scaling algorithms have been developed for chemistry
application, for example

1. Coupled-Cluster Singles and Doubles with Perturbative Triples (CCSD(T))
(Raghavachari et al. 1989; Bartlett and Musiał 2007)

2. Complete-Active-Space Self-consistent Field (CAS-SCF) (Roos et al. 1980;
Ruedenberg et al. 1982; González and Lindh 2020)

3. Density Matrix Renormalization Group Configuration Interaction/Self-consistent
Field (DMRG-CI/SCF) (White 1992; White and Martin 1999; Baiardi and Reiher
2020)

4. Full Configuration Interaction QuantumMonte Carlo (FCIQMC) (Booth et al.
2009)

5. Multi-Reference Configuration Interaction with Davidson size-consistency
correction (MRCI+Q) (Buenker and Peyerimhoff 1974a; 1975b; Langhoff and
Davidson 1974; Szalay et al. 2012)

6. Multi-Reference Second Order Perturbation (MR-PT2) (Andersson et al. 1990;
Angeli et al. 2001; Kurashige and Yanai 2011)

These traditional algorithms represent the state of art for solving the electronic
Schrödinger equation to high accuracy, and we refer to refs. (Motta et al. 2017; Williams
et al. 1041; Eriksen et al. 2020) for detailed comparisons of these methods. Their core
idea is still to solve the eigenvalue problem either using predefined restrictions of the
many-electron basis (CCSD(T), MRCI+Q) or through an iterative construction of the
basis-set expansion (DMRG, FCIQMC). As encoding the exact determinant space for
many orbitals (> 18) is hardly possible on classical hardware, a key aspect of all these
novel methods is to approximate the full determinant space.
The restriction to a selected finite set of so-called active orbitals in all FCI-type

approaches generates a somewhat artificial distinction of electronic correlations into
those that are called static (typically characterized by orbitals that occur in determinants
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with large weight in the wave function expansion) and those that are called dynamical
(referring to orbitals present in determinants with small to vanishing weights). We note in
passing that this artificial split into static and dynamical electron correlations can be over-
come if a routine numerical approach becomes available to obtain results of FCI quality
in a one-particle basis of one to a few thousand orbitals. Only quantum computing holds
the promise to accomplish this goal, provided that a sufficiently large quantum computer
can be built.
In CCSD(T), only the Hartree-Fock determinant and descendent determinants derived

from single and double orbital-substitution operations are considered in the many-
electron basis space (triple substitutions are added in a perturbative way). Such an
approach allows for the treatment of a very large orbital space. Hence, both static and
dynamical correlations can be recovered for a wide range of chemical systems. CCSD(T)
is considered the gold standard in traditional quantum chemistry methods. However, due
to the single reference nature of the method, it still breaks down for systems with strong
static correlations, e.g. open-shell metal complexes, or non-equilibrium structures involv-
ing double-bond (and beyond) forming and breaking. For those challenging systems,
where the static correlation is the key, one needs to use active space methods.
Unlike CCSD(T), the other aforementioned methods treat the chemical systems as

potentially dominated by many determinants (i.e., in a multi-configurational fashion) and
express this feature in terms of the choice of an active orbital space. CAS-CI is a pristine
treatment of full configuration interaction in a subset of chemically most relevant orbitals
(active space). DMRG-CI uses matrix product states to succinctly express the wave func-
tion. FCIQMC instead uses a coarse grained so-called walker distribution to sample the
determinant space. For such active space methods, the focus is on recovering the static
correlations originating from themulti-configurational nature of an electronic state under
consideration. A follow-up orbital optimization can be added in so-called self-consistent
field variants of these methods (i.e, CAS-SCF (Roos et al. 1980), DMRG-SCF (Ghosh et al.
2008), and FCIQMC-SCF (Li Manni et al. 2016)) to further minimize the total energy in a
variational sense by finding a better one-particle basis for the restricted active space, i.e.,
CAS-CI expansion. Two approaches are typically applied to recover the missing dynam-
ical correlations that arise from neglecting the major part of the virtual orbitals from the
active space. One choice is to apply perturbation theory (usually to the second order,
PT2) on top of the multi-configurational wave functions. This leads to methods such as
CASPT2 (Andersson et al. 1990), NEVPT2, (Angeli et al. 2001) DMRG-PT2, (Kurashige
and Yanai 2011) etc. The other approach is to apply a truncated-order configuration inter-
action (e.g. CISD) over the complete orbital space starting from a multi-configurational
wave function (including corrections for size consistency), which leads to methods such
as MRCI+Q (Szalay et al. 2012).
DMRG and FCIQMC have become routine traditional FCI-type approaches in recent

years as they can handle a much larger active space than the conventional CAS-CI algo-
rithm at reasonable computing times. However, formally they still have exponentially
scaling resource requirements for storing the wave function, just with amuch smaller pre-
factor. For instance, initiator-FCIQMC, which is the state-of-the-art FCIQMC method,
holds a roughly 10−10 pre-factor in its exponential form of wave function storage for
strongly correlated systems, which easily enables the approach to handle up to around
50 orbitals. In a system with relatively weak static correlation like benzene, a pre-
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factor of 10−25 has been achieved and led to a record active space size of 108 orbitals
(Ghanem et al. 2019).
In the near future, traditional methods such as DMRG and FCIQMC will remain more

practical than quantum algorithms. However, we note that it may be difficult to rigor-
ously assess the error in the energy after a fixed number of optimization cycles with
pre-defined parameters (such as the bond dimension for DMRG or the number of walk-
ers for FCIQMC). Whether quantum computing will become competitive in the realm of
FCI-type approaches will depend on advances in physical memory size and its communi-
cation speed with the CPU, because the polynomial scaling of storing the wave function
will ultimately become the most significant advantage of quantum computing for the
solution of problems in the molecular sciences.

Variational quantum eigensolver

Unfortunately, it is unfeasible to implement QPE on near-term quantum hardware due to
its long runtime and the resulting need for large-scale, fault-tolerant quantum computing
(requiring a huge number of physical qubits). An alternative approach, the so-called vari-
ational quantum eigensolver (VQE) (McClean et al. 2016), is more suitable for near-term
quantum hardware: Instead of running a single long calculation on a quantum computer
in the case of QPE, VQE iteratively executes and optimizes a short parametrized quantum
circuit that encodes the wave function ansatz. Due to the sampling involved in evaluating
the energy of the ansatz at every optimization step, the scaling of VQE with the desired
accuracy ε isO

(
1/ε2

)
, in contrast toO(1/ε) for QPE.

In VQE, the parametrized wave function ansatz �(θ) results in an expression for the
energy of the form

E(θ) = 〈�(θ)|H|�(θ)〉
〈�(θ)|�(θ)〉 = 〈�(θ)|H|�(θ)〉. (6)

Note that on a quantum computer the wave function is necessarily normalized so that
we can ignore the normalization in the denominator of Eq. (6). This expectation value is
always larger than the smallest eigenvalue E0 ofH owing to the variational principle. This
allows one to use classical computers to optimize θ in order to find an approximation
to E0.
Intuitively, VQE can be understood as a direct analog of variationalMonte Carlo (VMC)

(Foulkes et al. 2001), with the differences that 1) the wave function �(θ) is now stored
on a quantum computer, so it retains the merit of polynomial scaling in storage, and 2)
the energy is now evaluated through measurements instead of Monte Carlo integration.
The variational optimization of wave function parameters θ is then done on classical
computers just like in VMC.
Its hybrid nature allows VQE to be implemented on a quantum device with much less

coherence time. Unlike QPE, which gives the exact FCI energy, VQE gives a variational
upper bound on the energy. The accuracy of VQE is thus limited by the ansatz it adopts.
Multiple wave function ansätze have been investigated, developed, and implemented for
VQE, e.g., Hartree-Fock (HF) (Google AI Quantum and et al. 2020), unitary-coupled-
cluster (UCC) (Evangelista et al. 2019), qubit-coupled-cluster (QCC) (Ryabinkin et al.
2018), etc. A good ansatz needs to be able to closely represent the exact ground state,
require as few as possible iterations to find the parameter θ which minimizes E(θ), and
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have an efficient implementation on hardware. For a recent review on the different ansätze
used in VQE, see ref. (Bharti et al. 2021).
Once the energy of the ansatz has been measured, one can optimize the variational

parameters on classical computers to look for the minimum. The hardness of the opti-
mization problem depends on the chosen ansatz and the initialization. For example,
McClean et al. (2018) showed that there are cases with so-called “barren plateaus”, i.e.,
the probability that the gradient along any reasonable direction is non-zero to some fixed
precision is exponentially small as a function of the number of qubits. In ref. (Bittel and
Kliesch 2021), Bittel and Kliesch constructed a free fermion problem, which is solvable
in polynomial time, yet optimizing the variational parameters in a VQE formulation is
NP-hard.
Though the energy evaluation of a couple of molecules have been demonstrated on

NISQ hardware by VQE algorithms, (O’Brien et al. 2019a; O’Brien et al. 2019b; Nam et al.
2020; Kandala et al. 2017; Google AI Quantum and et al. 2020; Kawashima et al. 2021) it
must be noted that VQE does not scale well with respect to themolecule size. Recent work
showed that to reach chemical accuracy with a UCCSD wave function ansatz at around
100 spin-orbitals, VQE requires 105 gates (Kühn et al. 2019), which is already beyondwhat
is feasible on NISQ hardware. Furthermore, the 1011 measurements per optimization step
(Wecker et al. 2015) further increase the cost. Therefore, VQE is a solution for demon-
stration purposes on NISQ hardware, but QPE is to be preferred for routine real-world
applications.

Exited state energy

Another important direction is the evaluation of excited state energies. This is difficult
for traditional quantum chemistry algorithms. Popular approaches like linear-response
time-dependent DFT (TD-DFT) (Runge and Gross 1984) or algebraic diagrammatic
construction (ADC) (Schirmer 1982) have introduced further approximations thus low-
ering their accuracy (Laurent and Jacquemin 2013; Suellen et al. 2019). Even for the
state-of-the-art equation-of-motion CCSD (EOM-CCSD) (Stanton and Bartlett 1993) or
iterative approximate coupled cluster singles, doubles, and triples (CC3) (Christiansen et
al. 1995)methods, there still exist certain limitations. Classically, CAS-CI, DMRG-CI, and
MRCI+Q are among the very few methods that can resolve various excitation characters
(singly, doubly, ..., n-tuply) in both low-energy (valence excitation) or high-energy ranges
(core excitation). On the other hand, quantum algorithms are much more versatile when
evaluating excited state energies. QPE can probe excited state energies in the same way
as ground state energies. The only requirement is to have an excited-state-like trial state,
which can be prepared using MRCI or other wave function ansätze (Bauman et al. 2020).
Though VQE was originally designed to solve the ground state only, there has been sig-
nificant progress in applying VQE for excited states (McClean et al. 2017; Higgott et al.
2019). However, in contrast to QPE, VQE incurs additional overheads in resources and
measurements in the case of excited states.

Ansatz fidelity

Both QPE and VQE need to adapt certain wave function ansätze to prepare the trial wave
function. But the two methods have very different requirement in terms of the ansatz
fidelity. QPE can reach unlimited precision using any initial state of non-negligible overlap
with the true ground state. Previous research shows that one can use a 50% fidelity ansatz
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to still obtain the FCI energy within chemical accuracy using QPE (Bauman et al. 2020).
In contrast, the precision of VQE depends directly on the trial state. To obtain chemical
accuracy, it is necessary, through the choice of ansatz and tuning of variational param-
eters, to obtain 99.9% fidelity or more with the true ground state wave function. This
requirement itself already poses a challenge in the knowledge of efficient wave function
ansätze, especially for strongly correlated systems. Thus, we expect the development of
VQE to also advance classical algorithms.
We summarize the key differences between QPE and VQE for energy evaluation of

molecular systems in Table 2. In terms of the resource requirement and cost of comput-
ing, we currently expect QPE to deliver the real quantum advantage for molecular systems
in the long term.

Chemical properties

We have discussed how quantum algorithms can help obtain accurate electronic ener-
gies (for both, ground and excited states) of chemical systems, but many chemistry
applications need properties beyond electronic energies.
Free energy is one of the key quantities in thermodynamics and serves as the decisive

measure for predicting reactions or drug-protein docking. Free energy may be approx-
imated as a combination of separated degrees of freedom, i.e., as a sum of electronic,
vibrational, rotational, and translational free energies.
In traditional computational chemistry, one can use Monte Carlo sampling (Torrie and

Valleau 1977) or classical molecular dynamics (Sprik and Ciccotti 1998; Bussi and Laio
2020) to study an ensemble of molecular structures. This approach allows one to obtain all
four free energy contributions and their couplings in one shot. However, due to the num-
ber of steps needed in both methods, one needs a rapid way to evaluate the energy. Force
Field (FF) methods are therefore most frequently used in this approach. By virtue of low-
scaling DFT and hybrid quantum-mechanics andmolecular-mechanics (QM/MM) (Senn
and Thiel 2009) methods, first-principles molecular dynamics has also been adopted in
this field (Lu et al. 2016). Although these low-scaling or even empirical methods cannot
provide the total energy to chemical accuracy, the free energy difference is a relative quan-
tity where many errors may be expected to cancel. FF and DFT methods work reliably in
applications such as binding free energy predictions for drug-protein docking, although
they are generally prohibitively expensive for high-throughput screening studies. On
the quantum algorithm side, the quantum-Metropolis-Hastings algorithm can provide
a quadratic speedup for Monte Carlo simulations (Szegedy 2004; Lemieux et al. 2020).

Table 2 Comparison of QPE and VQE algorithms

QPE VQE

Solution Accuracy Exact eigenstate with controllable
error

Limited by ansatz |�(θ)〉 with
uncontrollable error

Cost O(#terms/ε) O((#terms/ε)2) × optimization steps

Ansatz fidelity requirement non-negligible 99.9%

Small non-trivial demonstrations H2 on NISQ H10, H2O on NISQ

Industrial scale demonstrations Requires logical qubits
1011 Toffoli gate operations (von
Burg et al. 2021)

Requires logical qubits
105 gates for state prep (Kühn et al. 2019)
1011 measurement for energy evaluation
(Wecker et al. 2015)
103 gradient descent
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However, the algorithm needs separated bases for electronic and vibrational degrees of
freedom. While the electronic wave function can be prepared by various ansätze, it is
much more challenging to prepare the vibrational basis for chemical systems (Bowman
1978; Bowman et al. 1979; Christiansen 2004; Barone 2005; Baiardi et al. 2017), which
makes the quantum acceleration of free energy calculations less straightforward (Sawaya
et al. 2020; Ollitrault et al. 2020).
Another routine application of quantum chemistry is to optimize and predict geome-

tries of molecules. For most of the small and intermediate size molecules, chemical
intuition can usually give good hints toward the approximate geometry. Geometry opti-
mization in such cases usually leads one to the nearest local minimum. This is a fairly
simple task classically that can be done through various numerical methods such as
quasi-Newton-Raphson or gradient descent (Schlegel 2011). Additionally, the analytical
gradient is generally available and reliable for FF and DFT methods; hence, a quantum
algorithm like quantum gradient estimation (Jordan 2005) does not provide any obvious
advantage. For large soft molecules like proteins, where the global minimum geometry
is of the most chemical interest, the geometry optimization becomes a non-trivial task.
Grover search (Grover 1997) can provide a quadratic speedup compared to classical brute
force search on the potential energy surface (PES). However, it is not a practical approach
as classically the geometry optimization will not be conducted in a complete black box
way. Heuristics like genetic algorithms (Deaven and Ho 1995) or simulated annealing
(Mundim and Tsallis 1996) are often used to search for global minimum geometry. In this
case, quantum walks (Szegedy 2004; Lemieux et al. 2020) may replace classical random
walks in simulated annealing to provide a quadratic speed up. However, due to the faster
clock speed of classical computers, quadratic speedups are unlikely to be practical in the
foreseeable future.

Dynamics

There are certain chemical phenomena that can only be studied through explicit time
evolution. For instance, in photo-active systems, one wants to study on which time scale
internal conversion and intersystem-crossing occurs. Answering such dynamics ques-
tions requires direct solution of Eq. (1). In traditional quantum chemistry, methods like
surface hopping (Martinez et al. 1997; Ben-Nun et al. 2000; Schmidt et al. 2008; Subot-
nik et al. 2016), and multi-configurational time dependent Hartree (MCTDH) (Meyer et
al. 1990; Beck et al. 2000; Manthe 2008) have been frequently used to explicitly propagate
nuclear and electronic wave packets over time. Autocorrelation functions then become
key quantities for information extraction. One of the prerequisites for those traditional
methods to work well is to have an accurate representation of the PES. This is essentially
an electronic structure problem as discussed in “Energy evaluation” section. On quantum
computers, such autocorrelation functions are no longer needed, because Hamiltonian
time-evolution is simulated directly. This means that in order to solve a time-resolved
problem such as determining when an intersystem-crossing happened, one will need
to run multiple Hamiltonian simulations for different time periods to search for, e.g., a
singlet/triplet population crossing point. Binary search can be used to reduce the cost.
Another challenge of applying quantum algorithms for dynamics is that one needs to
carefully think what to measure given the limited information one can obtain from a wave
function.
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Cheminformatics

Over the years, the development of modern computer architecture and advancements in
quantum chemistry software have made cheminformatics another booming application,
especially for screening drug and material candidates (Hartenfeller and Schneider 2010;
Gasteiger 2016).
Machine learning, as a data-driven approach, is expected to generate new insights from

massive existing quantum chemistry data. Several machine learning applications have
been developed to extract highly accurate predictions from low-precision quantum chem-
istry calculations using various neural network models (Carleo and Troyer 2017; Cheng et
al. 2019; Chen et al. 2020b; Dick and Fernandez-Serra 2020; Chen et al. 2020a; Hermann
et al. 2020).
Moreover, there is growing interest in applying quantum machine learning techniques

to change the landscape of cheminformatics (Biamonte et al. 2017; Bharti et al. 2020).
However, quantum machine learning is still in its infancy and there are known chal-
lenges to quantum computers reading classical data (Preskill 2018). It is unclear whether
quantum machine learning models offer a practical advantage over classical approaches.
In the near future, we therefore still expect classical machine learning to be domi-
nantly used in cheminformatics. However, one speculation is that quantum machine
learning may help learn the compact form of wave function as in this case, only Hamil-
tonian parameters are needed for the learning. This kind of problem will read the same
small amount of classical data just like solving a typical molecular energy problem
(Carleo and Troyer 2017).

Conclusions and perspectives
In this work, we provided an overview of potential target application areas in the
molecular sciences for quantum computing. We highlighted the competition with state-
of-the-art traditional methods. Especially in light of the tremendous achievements of
traditional algorithms on classical computers, demonstrating a game-changing quantum
advantage is a complicated and multi-faceted task. Current achievements in actual quan-
tum computation are impressive and truly encouraging, but we still have a long path
ahead of us.
A quantum algorithmmay be shown to have a formal advantage in terms of scaling and

efficiency over some traditional approaches. However, recently we have started to realize
only super-quadratic speedup quantum algorithms have the potential to excel the clas-
sical algorithms as there is a big constant speed advantage of classical computers. Even
for quantum algorithms with exponential speedups it is not clear whether they result in
an advantage over the best available traditional algorithms for a given practical problem
once all overheads are taken into account. In order to define what kind of advancement
has been achieved in the future, it could be helpful to introduce metrics that can mea-
sure its performance against the best state-of-the-art approaches and that relate to actual
computations on a quantum machine.
Potential criteria to keep in mind for such metrics may be the following:

1. Serial speed: For a given computational task, assess the time required on a
state-of-the-art classical computer for the fastest traditional method that can
deliver the same precision as the quantum algorithm on a quantum computer
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under the same constraints (e.g., same one-particle basis set), for which one either
measures or estimates a time. One may divide the former measured/estimated time
by the latter to obtain a speedup ratio. Note that the target precision may vary
depending on the accuracy needed for the computation result, which depends on
its scientific purpose.

2. Parallel speed: Accordingly, for a given scientific target, measure the reduction in
computing time when parallelization is taken into account without changing any of
the settings defined for the serial speed consideration above.

3. Cost: One may consider the cost in terms of computer acquisition, life time, energy
consumption, and environmental impact to decide whether a potentially more
inefficient traditional calculation might be preferred.

4. Accessibility: One would like to know how easy it will be to access a quantum
machine for an ordinary scientist (e.g., everybody can do traditional quantum
calculations on a laptop these days)

5. Scalability: The size of the problem, given, e.g., by the size and type of the molecule
which sets the number of orbitals to be considered, will require flexible hardware
that can cope with this changing parameter.

In recent years, we have seen remarkable achievements in quantum hardware and algo-
rithm development and there is no reason to believe that this accelerating pace will
be slowing down any time soon. However, the metrics mentioned above will ultimately
decide on the success and fate of the different strategies that are currently being pursued
in the field of quantum computation for molecular science.
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