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Abstract

A time-honored approach in theoretical materials science revolves around the search
for basic mechanisms that should incorporate key feature of the phenomenon under
investigation. Recent years have witnessed an explosion across areas of science of a
data-driven approach fueled by recent advances in machine learning. Here we provide
a brief perspective on the strengths and weaknesses of mechanism based and
data-driven approaches in the context of the mechanics of materials. We discuss recent
literature on dislocation dynamics, atomistic plasticity in glasses focusing on the
empirical discovery of governing equations through artificial intelligence. We conclude
highlighting the main open issues and suggesting possible improvements and future
trajectories in the fields.
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Introduction
The common goal of continuum mechanics is to establish the macroscopic response to a
stimulus in a given geometry for a certain material. This response can be a simple scalar
quantity like a force acting on a cantilever or a fully fledged tensorial constitutive model.
Ideally, to develop such macroscopic relationships, one would like to derive the govern-
ing equations from first principles starting from a microscopic description under a set of
approximations. A well established example is the theory of linear elasticity (Landau and
Lifshitz 1986), which can be derived based on general symmetry consideration or even
as a large-scale limit of an atomic scale description of a crystal. As soon as one consid-
ers applications outside the linear regime like in plasticity, a rigorous approach becomes
impossible as the approximation from first principles is neither analytically obvious nor
computationally feasible. To deal with this issue, traditionally scientists have attempted to
derive models from simple underlying material mechanisms, physical analogies or (semi-
)empirical considerations which are then corroborated by fitting the usually limited data
that were available. Examples of this general approach are provided by dislocation-based
theories (Bulatov and Cai 2006; Bertin et al. 2020), spring-damper visco-elastic models
(Macosko 1994; Bird et al. 1987) and the different yield hypothesis’ in engineering.
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The alternative to a mechanism based approach is a data-driven one, which in the past
was reduced to either fitting data with trial functions, multivariate of linear combinations
of hand-selected functions or linear decomposition techniques like principal component
analysis, which in mechanics is known as proper orthogonal decomposition. The first
approach suffers inevitably from the fact that humans are not able to visualize data fitting
in more than three dimensions , the second is limited by a bias regarding the functional
relations and the third performs poorly for non-linear patterns due to its intrinsically
linear nature. Modern machine learning (ML) techniques like neural networks bypass
these problems as they do not rely on the choice on a proper function thus as a posi-
tive side effect taking human bias out of the process. While the success of ML in speech
and image processing is common knowledge by now, new data-driven approaches have
also outperformed traditional hand-crafted feature methods in computational chemistry
as well as linear filtering techniques in computational fluid mechanics. Some notable
applications are the structure based prediction of molecular properties (Rupp et al. 2012;
Schütt et al. 2017; Gastegger et al. 2020), the development of accurate density functional
theory force fields (Behler and Parrinello 2007; Unke et al. 2020; Chmiela et al. 2017)
and the discovery of the underlying governing equations of dynamical systems and flow
(Champion et al. 2019; Brunton et al. 2016; Rudy et al. 2019).
In this perspective, we share our views on how traditional mechanism based approaches

compare to modern methods (Fig. 1) emanating purely from observational data assisted
by ML techniques. A crucial aspect that we will underline is the relevance of principles
based on physical insight that should be kept in mind when applying ML. We will dis-
cuss examples in the fields of dislocations, plastic deformation of glasses and equation
discovery, focusing on the limitations of the method and suggesting possible routes for
improvement.

Fig. 1 Traditional (grey) and modern (green) approaches with an example DDD image from Fan et al. (2021)
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Machine learning approaches in physics andmechanics
In this section, we are going to explain the usual workflow of machine learning in general,
point to the underlying physical considerations that should be followed and give a short
comment on the difference of simulation and experiments. The typical modus operandi
in ML is to split the available data in training and test sets. One then trains an estima-
tor f (X,α) to predict a target Y with features X extracted from the data by minimizing
the cost function C with respect to the trainable parameters α. A model’s performance is
judged by some summary metric evaluated on the test set which should ideally be dimen-
sionless and avoid error cancellation. The general goal of feature extraction is to obtain
a dimensional reduction from the raw data and thus a favourable representation for the
prediction, reducing the need of large training sets and producing higher prediction accu-
racy. Ideally the features X should be chosen following a few guiding principles adapted
from approaches in quantum chemistry (Langer et al. 2020): i) the symmetries of the
underlying problem must be preserved. In other words, features must be invariant under
transformations which leave Y unchanged, ii) The mathematical properties of the prob-
lem, like continuity and differentiability with regards to Y, should be preserved by the
features. iii) Features should be chosen so that the procedure is computationally efficient.
iv) It must be possible to generalize the method to different system sizes so that systems of
different sizes could be expressed by the same number of features. v) It should be possible
to reconstruct the raw input from X so that the features provide a lossless representation.
Criteria i) and iii) should be met at all times while the other conditions could be aban-

doned in specific cases. Feature construction can be done by hand or by the estimator,
as modern convolutional neural networks (CNN) in image recognition do. However, for
data not located on a simple grid akin to an image, these well established estimators
cannot be employed. Symmetry functions or derived from that continuous filter convo-
lutions however solve that problem for off-grid objects (Schütt et al. 2017; Behler and
Parrinello 2007). Regarding the choice of the estimator, researchers should consider their
sample size, desired accuracy and interpretability. The sample size narrows the number
of possible estimators down due to high sample demand or to poor computation/memory
scaling. Accuracy and interpretability can have a trade off relationship as deep learn-
ing approaches are very accurate in many applications but remain often quite difficult
to interpret. In contrast, decision trees or even linear regression models are much easier
to understand than deep learning but are far from optimal with respect to performance
(Lapuschkin et al. 2019). For the special case of obtaining interatomic potentials, accuracy
is the key, so interpretability is secondary. On the other hand, if we wish to understand a
physical process, interpretability is often more important than accuracy.

Machine learning in dislocation dynamics and crystal plasticity
Simulations of dislocations-based plasticity can be performed at different levels in well
established spatio-temporal hierarchy, ranging from atomistic molecular dynamics (MD),
mesoscale discrete dislocation dynamics (DDD) and continuum dislocation dynamics
(CDD) and macroscale crystal plasticity (CP). MD and DDD shed light on the mutual
interactions of dislocations and dislocation interactions with defects on a nanometer
(MD) and micrometer (DDD) scale while CDD and CP describe dislocation pattern
formation, microstructure evolution and mechanical response on dimensions relevant
for macroscopic mechanical testing. The hierarchical simulation workflow is to pass
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parameters from the lower scale models to higher scale theories, in order to developmod-
els better incorporating the characteristics of a lower scale simulations or to benchmark
existingmodels. Problems arise from the fact that thesemethods act at different space and
time scales and overlapping regions enabling direct benchmarking are either non-existent
or small and come at large computational costs. The issue of closure of the hierarchy of
equations describing n-point densities in CDD is also not completely resolved. Finally, the
analysis of resulting structures and the connection to the mechanical response is also not
straightforward.
A series of ML applications to dislocation plasticity has been published by Laurson

and coworkers. In their first work, the goal was to predict the stress strain behaviour
of individual samples of 2D DDD simulations from internal stresses, encapsulated into
statistical moments, magnitudes, Fourier coefficients and some other hand-crafted fea-
tures. The predictions turned out to be moderately successful (R2 ∼ 0.5 for undeformed
and R2 ∼ 0.7 for prestretched samples) as their estimators failed to predict burst activ-
ity which the authors argued to be stochastic by nature, thus limiting the predictability of
DDD in general (Salmenjoki et al. 2018). In a more recent work the same authors inves-
tigated whether the transition from dislocation pinning to jamming in the presence of
spherical precipitates could be detected by the systems dislocation structure. To that end,
the system was discretizised by voxels of the (spatial) Fourier transform of the time evolu-
tion of the geometrically necessary dislocation density, the dislocation spacing correlation
and a parameter describing the dislocation junction lengths. To detect the transition,
an unsupervised training scheme was employed: Under the assumption that the sys-
tem described by a parameter p switches phase at a critical value pc, a binary classifier
should maximize its accuracy for phase labels generated with the binarization threshold
being the true critical value. By solving this maximization problem, pc could be found.
The training was done independently for each feature. Interestingly the critical precipi-
tate density found for each feature was in reasonable agreement across all three features
(Salmenjoki et al. 2020).
A clever way to parametrize the constitutive model for CP from DDD has been shown

in Messner et al. (2017). The CP model was developed to describe the slip resistance on
a slip system taking into account interaction with all other slip systems by an interac-
tion matrix H. The evolution of the dislocation density was described by another matrix
K. Technically H and K have 1521 and 59319 free parameters, but the authors reduce
these numbers by taking into account crystal and physical symmetries in the system and
applying LASSO regression. In LASSO regression the model chooses a trade-off during
training between the number and magnitude of the free parameters and the prediction
accuracy on the training set to prevent overfitting (Tibshirani 1996). The number of free
parameters for H and K was reduced to 27% and a staggering 0.3% of non-zero compo-
nents. Another interesting application to extend higher order CPmodels to larger systems
was published recently (Pandey and Pokharel 2020). A number of CP simulations for uni-
axial tension with different cell sizes where generated and 3x3x3 cubes extracted. The goal
was to predict the microstructure evolution of the center voxel in the cube over a series
of 13 strain steps with a recurrent neural network. This approach has three advantages:
i) Each CP simulation yields a high number of training samples thus making dataset gen-
eration cheap ii) Each sample is small in terms of memory making the training cheap in
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terms of memory consumption iii) The model can be applied to systems of arbitrary size
by decomposition and reconstruction of the simulation cell.
The data-driven approaches applied to DDD, apart from a 1D case (Sarvilahti et al.

2020) use hand-crafted features in the spirit of traditional phenomenology, although
sophisticated inclusion of crystal symmetries or other physical insights have not yet been
used (Salmenjoki et al. 2018; Salmenjoki et al. 2020; Steinberger et al. 2019). While work-
ing along known phenomenons is beneficial to support and understand existing models,
it is unlikely to reveal a lot of new physics. Symmetry functions from computational
chemistry cannot be used as they cannot account for the long range interaction of dislo-
cations, do not include the crystallographic symmetries of the system and the orientation
of the dislocation configuration with respect to an external load. The alternative route of
mapping the dislocations onto a grid to use convolutional neural networks, as in image
recognition, and its generalization to 3D leads to significant information loss due to dis-
cretization, explodingmemory on reasonably large volumes and neglects crystallographic
information. So the search for a way to enable machine crafted features is in our opin-
ion the main issue for ML approaches to DDD. In CP, the route is more straightforward
and the two publications discussed above (Messner et al. 2017; Pandey and Pokharel
2020) have already shone light on what can be done. Crystallographic information can be
incorporated into the underlying constitutive model via LASSO or other regularization
methods. CP simulations can be used as input by off the shelf neural network architec-
tures as they are already located on a grid for most cases. Two interesting questions are i)
can nonlocal models be learned without simply increasing the size of the extracted cube
as in Pandey and Pokharel (2020)? ii) Can an estimator be trained which predicts global
properties like a stress-strain curve of microstructures of different (grid) size?

Data-driven approaches in atomistic glasses
An interesting challenge in amorphous solids is to identify which atoms will plastically
deform due to thermally activated processes or under an external load. We focus here on
the second task where the loading scenario is always simple shear. Two papers were pub-
lished by Cubuk, Schoenholz and coworkers (Cubuk et al. 2015; Bapst et al. 2020). The
first approach to this problem (Cubuk et al. 2015) was based on the use the symmetry
functions to encode the neighbourhood of an atom, as these descriptors are transla-
tion and rotation invariant, and to classify whether its non-affine displacement (Falk and
Langer 1998) has exceeded a certain threshold in an athermal quasistatic loading scenario.
This was done for a range of different thresholds with the best accuracy smaller but close
to 75%. The studied glass system was a Kob-Andersen system under shear and the esti-
mators support vector classifiers. Through closer inspection of the symmetry features,
deformed and undeformed particles could be distinguished by different distributions in
the angular symmetry functions. In their second attempt (Bapst et al. 2020), for the same
glass system, the authors tried to predict a simplified non-affine displacementmeasure via
a graph neural network. For that purpose all atoms of one simulation run are embedded
as a graph where each node represents an atom and is connected to other atoms within
a cutoff radius. After evolving the graph neural network a few times, each node yields
the prediction for each individual atom. The success of this model was measured by the
Pearson correlation coefficient p
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p = Cov(Y , f (X))
√
Var(Y )Var(f (X))

. (1)

The numerator is the covariance of the predicted value and the true value. We notice
that the covariance allows for errors to cancel. It would therefore be more appropriate to
employ more standard metrics and loss functions for regression, such as the coefficient of
determination, the mean squared error or the mean absolute error where errors only add
up. The use of the Pearson coefficient leads to a too benevolent assessment of a model
when compared to the other better designed metrics.
A different approach was taken by Wang et al. (2019) who construct short and medium

range features from interstice distributions, Voronoi derived quantities and cluster iden-
tifications. Any atoms with a non-affine displacement greater than 5 Å are deemed
plastically deformed. The authors investigated a series of metallic glasses at different com-
positions and quench rates. Accuracy reached in this work goes up to 77% which is a
similar performance to Cubuk et al. (2015), but with far fewer features (i.e. 15). Further-
more, the approach seems to generalize reasonably across different compositions and
quench rates. In another work by the same group, the authors added additional features
to their approach and also investigated the robustness of their descriptors with respect
to thermal fluctuations (Wang et al. 2020). In a more recent publication Fan et al. (2021)
considered binary metallic glass and binary Lennard Jones systems under different load-
ing protocols. To analyze the systems, the authors created an image for every atom,
capturing the neighbourhood of an atomwithin a cutoff radius. For each pixel, radial sym-
metry functions for each species are calculated, so that the images have two channels.
This procedure obviously sacrifices rotation invariance, which is fixed by rotating each
image so that shearing is done along the X and tension/compression along the Y direc-
tion. This is a clever thing to do, as the orientation of the local environment with respect
to the box strain state is important since local atomic environments are anisotropic.
The images created in this way were then fed to a convolutional neural network to
classify plastically deformed particles. The results outperformed the graph neural net-
work by Bapst et al. (2020) and support vector machines trained on symmetry functions
(Behler and Parrinello 2007).
Apart from Fan’s work, no other work has understood that choosing translation and

rotation invariant features without consideration of the loading scenario is actually con-
trary to the symmetries of the underlying atomistic problem. While Fan’s workaround is
advantageous in terms of simplicity, their method of rotation of the coordinate system
works only for simple strain protocols. A generalization to complex loading states should
be done especially if one later wants to develop a continuum theory based on the ML
findings.

Discovery of functions and partial differential equations from data
Methods for discovering from data the governing equations as a set of algebraic equations
is similar to the path for partial differential equations (PDE). These methods were devel-
oped in the context of dynamical systems, so the basic mathematical assumption to the
model is that we are interested in the time evolution of some quantity Ẋ = f (X) and
look for an approximation of f (Brunton et al. 2016). A collection of possible functions �

including cross terms is constructed and measurements of X, Ẋ are performed. By com-
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bining the trial functions in a linear combination with the column vector of coefficients
� it boils down to a linear problem

Ẋ = �(X)� (2)

where �(X) is the matrix of possible functions evaluated with the measured X, where
each column represents one trial function. This problem then is solved via a regular-
ization ansatz similar to LASSO enforcing sparsity of the components thus limiting
the model to the governing equations (Brunton et al. 2016). The generalization to PDE
is straightforward as additional to X, Ẋ spatial derivatives have to be measured and
included in the functional guesses � (Rudy et al. 2017; Rudy et al. 2019). Neural net-
work based autoencoder have already been combined with this approach to find the
optimal coordinates and equations the solution of problems (Champion et al. 2019).
This ansatz however has the downside that the transformation to the discovered coor-
dinate system and back is done via neural networks and the back-transformation loses
information.
In our opinion, this branch of ML is particularly interesting for mechanics as a proper

inclusion of the symmetries can truly lead to the discovery of new equations. Symmetries
can also be discovered from data, by including a functions of different symmetries in the
function library� and regularizing heavily e. g. via LASSO in order to keep only the most
important functions/symmetries. Also contrary to deep learning approaches the discov-
ered equations are interpretable and also it is fairly easy to communicate them to fellow
researchers in either publications or personal communication. Extensions to the existing
methods is possible, as the developers have made their programs publicly available in a
python package (de Silva et al. 2020). The disadvantage of this method is, that it is only as
clever as the researcher employing it since this person decides which functions enter �.
Possible applications can be the discovery of governing equations for CDD and CP or the
development of continuum models for the new class of meta-materials.

Dealing with experimental data
As most of this manuscript deals with simulations, we will highlight shortly the major
obstacles in applying the same methods to experiments. Training models on extracted
scalar quantities like composition-property dependence is completely analogue to sim-
ulation and straight forward. Drawing conclusion from 2D/3D data is, however, more
difficult. In the case of images one has to deal with a few issues: Parts of the information
are limited by the precision of the measurement and noise, while data about the third
dimension is completely missing. Apart from ultra-thin cases the missing dimension will
affect the prediction and in some cases render it entirely impossible. In the case of the
model being successful, one can try to identify important parts of the image via heat
map techniques or other interpretation techniques, but this analysis will be qualitative by
nature and not necessarily interpretable by humans despite the best efforts (Samek et al.
2021). An alternative is to extract the coordinates of the important components of the
image like defects, dislocations, etc. via computer vision techniques. Then one can use
the same ML algorithms as used for MD, DDD and other particle based simulations or
form various density measures with the equation discovery methods we presented in this
paper.
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Conclusion
Considering the successful applications of machine learning (ML) in recent years across
many fields of science, we have given a short overview of the general process focusing on
what should be taken into account when applyingML tomechanics/physics-related ques-
tions. We highlighted possible routes of applications in the field of dislocations dynamics
models, atomistic models for plasticity in glasses and model discovery. In our opinion,
it is vital to incorporate the underlying symmetry of the physical problem in the ML
model in order to build a stable model with fewer training data. In order to advance our
understanding of mechanics, ML should not be only pursued with the aim of increas-
ing accuracy, but should also focus on the use of interpretable features and estimators.
This combination of first principles and data science promises to be a highly rewarding
endeavour to expand our knowledge and develop novel data driven materials theories.

Abbreviations
ML machine learning; DDD discrete dislocation dynamics; CDD continuum dislocation dynamics; CP crystal plasticity;
PDE partial differential equations

Acknowledgements
We thank Michael Zaiser for useful discussions

Authors’ contributions
The authors jointly wrote the manuscript and contributed equally. All authors read and approved the final manuscript.

Funding
This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
377472739/GRK 2423/1-2019 and via the Grant no. 1 ZA 171/14-1. The authors are grateful for this support. Open Access
funding enabled and organized by Projekt DEAL.

Availability of data andmaterials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Materials Simulation, Department of Materials Science and Engineering, Friedrich-Alexander-University
Erlangen-Nuremberg, Fürth, Germany. 2Center for Complexity and Biosystems, Department of Physics, University of
Milan, Milan, Italy. 3Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR - Consiglio Nazionale
delle Ricerche, Milan, Italy.

Received: 24 May 2021 Accepted: 24 June 2021

References
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