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Abstract

An efficient and accurate approach for calculating exact exchange and other
two-electron integrals has been developed for periodic electronic structure methods.
Traditional approaches used for integrating over the Brillouin zone in band structure
calculations, e.g. trapezoidal or Monkhorst-Pack, are not accurate enough for
two-electron integrals. This is because their integrands contain multiple singularities
over the double integration of the Brillouin zone, which with simple integration
methods lead to very inaccurate results. A common approach to this problem has been
to replace the Coulomb interaction with a screened Coulomb interaction that removes
singularities from the integrands in the two-electron integrals, albeit at the inelegance
of having to introduce a screening factor which must precomputed or guessed.
Instead of introducing screened Coulomb interactions in an ad hoc way, the method
developed in this work derives an effective screened potential using a Filon-like
integration approach that is based only on the lattice parameters. This approach
overcomes the limitations of traditionally defined screened Coulomb interactions for
calculating two-electron integrals, and makes chemistry many-body calculations
tractable in periodic boundary conditions. This method has been applied to several
systems for which conventional DFT methods do not work well, including the reaction
pathways for the addition of H2 to phenol and Au−

20 nanoparticle, and the electron
transfer of a charge trapped state in the Fe(II) containing mica, annite.

Keywords: NWChem, High-performance chemistry, Plane-wave DFT,
Pseudopotentials, Projector augmented wave, PAW, PSPW, Ab initio Molecular
Dynamics, AIMD, Periodic exact exchange, UHF, DFT, Electron transfer

Introduction
One of the more computationally demanding and important scientific simulations for
materials and chemistry is the ab initio Molecular Dynamics (AIMD) method (Car and
Parrinello 1985; Remler and Madden 1990; Payne et al. 1992; Marx and Hutter 2009;
Bylaska et al. 2011b; Bylaska 2017) in which the motions of the atoms are simulated using
Newton’s laws where the forces on the atoms are obtained using the plane-wave DFT
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methods. Plane-wave DFT methods are advantageous for implementing AIMD because
the calculation of the forces is computationally less expensive than more traditional
LCAODFTmethods. An exciting use for AIMD is to be able to directly simulate chemical
reactions in condensed phases. However, these types of simulations are rarely attempted,
because even with an efficient plane-wave DFT method, AIMD requires large computa-
tional resources not accessible to most researchers. This situation is even worse for the
direct simulation of many standard chemical reactions, because higher and more expen-
sive levels of DFT, which explicitly include exact exchange (i.e. Hartree-Fock exchange),
are needed to accurately represent the energetics of transition states (Bylaska et al. 2011a;
Bylaska 2017).
A fundamental challenge in including exact exchange in plane-wave DFT methods for

condensed phase systems is that one typically wants to use periodic boundary conditions
to carry out the simulation. While this is natural for plane-wave DFT methods with-
out exact exchange, it is significantly more complicated when using exact exchange as it
requires special integration strategies to handle the integration of the Brillouin zone. At
first glance, periodic many-body calculations would appear to be intractable because the
expansion of one-electron orbitals in terms of Bloch states

ψσ ,nk(r) = eik·r
√

�

∑

G
ψσ ,nk(G)eiG·r (1)

leads to a large number of orbitals describing the first Brillouin zone. Simple approx-
imations to the integration over the Brillouin zone in the exact exchange and other
two-electron integrals lead to very inaccurate results, e.g. a straightforward � point
approximated calculation results in the two-electron integrals being infinite.
To handle this problem the condensed phase community typically introduces a

screened Coulomb interaction to calculate the two-electron integrals (Stampfl et al. 2001;
Heyd et al. 2003; Heyd and Scuseria 2004; Peverati and Truhlar 2012). The types of
screened interactions in these approaches are highly dependent on the type of mate-
rial and are calculated using an expensive coupled perturbed DFT calculation or the
screened interaction is directly optimized during the calculation as in an RPA (Langreth
and Perdew 1977; Niquet et al. 2003) or GW (Hedin 1965; Aryasetiawan and Gunnars-
son 1998; van Schilfgaarde et al. 2006) calculation. In principle, this type of approach can
be made accurate. However, the highly engineered nature of these types of approaches,
which introduce material dependent screenings, makes it difficult to use them for systems
in which the screenings vary across the simulation cell, e.g. catalytic reactions at metal
surfaces, adsorption at solvated mineral surfaces, the structure of complex brines con-
taining highly charged ions, extended defects in solids, and electron transfer in solids and
at complex interfaces.
Another approach that can be used that is less engineered is the Wannier orbital

approach (Bylaska et al. 2011a; Bylaska 2017). This approach is preferable for molecu-
lar and liquid systems, and when used in combination with advanced high-performance
computing algorithms it has been used with success on a variety of non-trivial systems,
including highly charged ions in solution(Atta-Fynn et al. 2011; Fulton et al. 2012), min-
eral surfaces(Chen et al. 2016; 2017), reactions in solution(Bylaska 2017), and electron
transfer(Bylaska and Rosso 2018). Despite these successes, there are still some well known
drawbacks. In particular, for periodic solids it is not obvious how to extend the Wannier
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orbital approach to systems that can be described using small unit cells and large k-point
samplings (e.g. small band gap semiconductors), as it requires the use of large unit cells
and large band gaps to be accurate.
In this work, we present an efficient and accurate approach for calculating exact

exchange and other two-electron integrals in periodic electronic structure methods. In
contrast to prior screened interaction and Wannier orbital based methods (Bylaska et al.
2011a), our new proposed method is equally applicable to both condensed phase systems
and molecular systems and can easily be generalized to work with standard Monkhorst-
Pack integration techniques used in band structure calculations. The manuscript first
shows, in “Derivation of exact exchange in periodic boundary conditions” section, the
derivation of exact exchange in periodic boundary conditions, and “Integration strategy
for exact exchange in periodic boundary conditions” section presents a Filon-like inte-
gration (Filon 1930) approach for it, in which an effective screened or filtered exchange
kernel is derived solely in terms of the size and shape of the first Brillouin zone. A key
aspect of our derivation is the observation that the integrands in the exchange integrals
are composed of a smooth function times a stiff function, where the stiff function is inde-
pendent of the one-electron orbitals and is purely a function of first Brillouin zone. In
“Integration strategies for generating filtered potentials” section, an accurate and efficient
strategy for generating the filtered potential is presented, and in “Applications” section
the new method is applied to Hybrid DFT and electron transfer calculations. Finally,
conclusions are given in “Conclusion” section.

Derivation of exact exchange in periodic boundary conditions
The standard formula for exact exchange energy of a total system is given by

Ex = −1
2

Nσ
occ∑

m,n=1
σ=↑,↓

∫∫

V̄

ψ∗
n,σ (r)ψm,σ (r)ψ∗

m,σ (r′)ψn,σ (r′)
|r − r′| drdr′ (2)

where ψn(r) are the one electron spin orbitals, V is the integration volume that spans the
entire system, and Nσ

occ are the number of occupied spin orbitals. The notation for the
volume with the bar above it, e.g. V̄ , is used to denote the range of integration in volume
integrals.
The following substitutions,

ψn,σ (r) → exp(ik · r)ψnk,σ (r) (3)
∑

n
→ 1

VBZ

∫

V̄BZ

dk
∑

n
(4)

V → �∞ (5)∫

V̄
dr →

∫

�̄∞
dr →

∑

a

∫

�̄

dr (6)

can be used to convert Ex to periodic boundary conditions, where VBZ = 8π3

�
is the

volume of the first Brillouin zone, � is the volume of the periodic unit cell, and �∞ is
an infinite collection of supercells, with volume �, separated by Bravais lattice vectors a.
Using these substitutions the exact exchange energy can be transformed into the following
energy per unit cell
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Ex = −1
2

�

�∞

∑

m,n
σ=↑,↓

∫∫

�̄∞
drdr′ ψ

∗
m(r)ψn(r)ψ∗

n (r′)ψm(r′)
|r − r′|

= −1
2

�

�∞

(
�

8π3

)2 ∫∫

V̄BZ

dldk
∑

m,n
σ=↑,↓

∫∫

�̄∞

drdr′
ei(k−l)·rψ∗

ml,σ (r)ψnk,σ (r)ei(l−k)·r′ψ∗
nk,σ (r′)ψml,σ (r′)

|r − r′|
= −1

2

(
�3

64π6�∞

) ∫∫

V̄BZ

dldk
∑

m,n
σ=↑,↓

∑

a,b

∫∫

�̄

drdr′

ei(k−l)·(r+a)ψ∗
ml,σ (r + a)ψnk,σ (r + a)

× ei(l−k)·(r′+b)ψ∗
nk,σ (r′ + b)ψml,σ (r′ + b)

|r − r′ + a − b|
= −1

2

(
�3

64π6�∞

) ∫∫

V̄BZ

dldk

∑

m,n
σ=↑,↓

∑

a,b

∫∫

�̄

drdr′
ei(k−l)·(r+a)ψ∗

ml,σ (r)ψnk,σ (r)ei(l−k)·(r′+b)ψ∗
nk,σ (r′)ψml,σ (r′)

|r − r′ + a − b|

= −1
2

(
�3

64π6�∞

) ∫∫

V̄BZ

dldk

∑

m,n
σ=↑,↓

∫∫

�̄

drdr′ei(k−l)·(r−r′)ψ∗
ml,σ (r)ψnk,σ (r)ψ∗

nk,σ (r′)ψml,σ (r′)
∑

a,b

ei(k−l)·(a−b)

|r − r′ + a − b|

The following relation for periodic sums

∑

a,b
f (a + b) = �∞

�

∑

a
f (a)

can be used to simplify the exchange energy to be

Ex = −1
2

(
�2

64π6

) ∫∫

V̄BZ

dldk
∑

m,n
σ=↑,↓

∫∫

�̄

drdr′ψ∗
ml,σ (r)ψnk,σ (r)ψ∗

nk,σ (r′)ψml,σ (r′)

∑

a

ei(k−l)·(r−r′−a)

|r − r′ − a|

In this formula, ψnk(r) and
∑

a
exp(iK·(R−a))

|R−a| are periodic functions that can be repre-
sented by the following discrete Fourier sums

ψnk(r) = 1√
�

∑

G
ψnk(G)eiG·r

∑

a

exp (iK · (R − a))
|R − a| = 1

�

∑

G

4π
|G − K|2 exp (iG · R)
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Making these replacements and then integrating out r and r′ results in the following
formula

Ex = − 1
2�

∑

σ=↑,↓

1
(VBZ)2

∫∫

V̄BZ

dldk (7)

×
⎡

⎣
Nσ
occ∑

n=1

Nσ
occ∑

m=1

∑

G

4π
|G − k + l|2 ρσ

ml;nk(−G)ρσ
nk;ml(G)

⎤

⎦

where VBZ = (2π)3

�
is the volume of the first Brillouin zone and the overlap densities in

reciprocal space are given by

ρσ
nk;ml(G) =

∑

G′
ψ∗
nk,σ (G′)ψml,σ (G′ + G) (8)

Integration strategy for exact exchange in periodic boundary conditions
As pointed out by Gygi and Balderechi (1985, 1986, 1989) and others Chawla and Voth
(1998); Sorouri et al. (2006); Marsman et al. (2008); Görling (1996), this expression must
be evaluated with some care especially for small Brillouin zone samplings and small unit
cell size, because of the singularities at |G − k + l| = 0.
In previous work, we have shown that the exact exchange energy for periodic crystals

can be implemented using a formalism based on localized Wannier orbitals (Marzari and
Vanderbilt 1997; Silvestrelli 1999). Extensive derivations of formulae implementing exact
exchange can be found in prior work by (Bylaska et al. 2011a). In this work, we show
how to simplify Equation 7 so that it can be evaluated with the same level of accuracy as
the localized Wannier orbital procedure (Bylaska et al. 2011a, b), and arguably with even
more accuracy.
The first step is to notice that if the Brillouin zone sampling or unit cell is large enough,

the overlap densities are independent of the Brillouin zone integration in the exchange
energy (Bylaska 2015). That is, Equation 7 can be rearranged as follows,

− 1
2�

(
1

(VBZ)2

) ∫

V̄BZ

dk
∫

V̄BZ

dl
∑

G

[
4π

|G − k + l|2 ρσ
ml;nk(−G)ρσ

nk;ml(G)

]

≈ − 1
2�

(
1

(VBZ)2

) ∑

G
ρσ
ml;nk=0(−G)ρσ

nk;ml=0(G)

[∫∫

V̄BZ

4π
|G − k + l|2 dkdl

]

= − 1
2�

∑

G
ρσ
ml;nk=0(−G)ρσ

nk;ml=0(G)Vf (G) (9)

where Vf is given by

Vf (G) = 1
(VBZ)2

∫∫

V̄BZ

4π
|G − k + l|2 dkdl (10)

We refer to this potential as a filtered potential. Moreover this strategy can be gener-
alized to be a 2D trapezoidal integration over k and l, where there is a filtered potential
for each 2D patch in the trapezoidal integration. Our new approach is named after Filon
integration because of its similarity to this style of integration, in which the integration
(over k and l) of a slowly varying function that is modulated by a high frequency or stiff
function is carried out. In the case of the exchange integral the slowly varying functions
are the overlap densities and the stiff function is 4π

|G−k+l| . The filtered potential can read-
ily be evaluated for most of G vectors by using a simple numerical integration. The range
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of integration is illustrated in Fig. 1. However, for G = 0 and the G vectors just outside
the first Brillouin zone, care must be taken to evaluate these integrals.

Vf (G = 0) = 4π
(VBZ)2

∫∫

V̄BZ

4π
|l − k|2 dkdl

= 4π
(VBZ)2

∫∫

V̄BZ

1 − e−α|l−k|2

|l − k|2 dkdl + 4π
(VBZ)2

∫∫

V̄BZ

e−α|l−k|2

|l − k|2 dkdl (11)

≈ 4π
(VBZ)2

∫∫

V̄BZ

1 − e−α|l−k|2

|l − k|2 dkdl + 8π2

VBZ

√
π

α
(12)

Fig. 1 Illustration of the first Brillouin zone, the location of reciprocal lattice vectors G, and the range of
values for k− l in the double volume integration needed to evaluate Eq. 10 for � point calculations (top) and
Monkhorst-Pack sampling calculations (bottom)
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The first term in Equation 11 can be evaluated by using numerical integration since the
singularity at |l−k| = 0 has been removed, and the second term in this formula is approx-
imated by expanding its range of integration to an infinite volume, and using the following
formula

lim
V→∞

4π
V

∫∫

V̄

e−α|l−k|2

|l − k|2 dkdl = 8π2
√

π

α
, (13)

i.e.

4π
(VBZ)2

∫∫

V̄BZ

e−α|l−k|2

|l − k|2 dkdl ≈ 4π
VBZV

∫∫

V̄

e−α|l−k|2

|l − k|2 dkdl

→ 8π2

VBZ

√
π

α
(14)

For simple cubic boxes, the values of the integral where the integrand is singular can be
shown to be

lim
V→∞ 4π

∫∫

V̄

e−α|l−k+Gi1,i2,i3 |2

|l − k + Gi1,i2,i3 |2
dkdl =

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

8π2
√

π
α

× V |i1| + |i2| + |i3| = 0

2π2 1
α

× V
2
3 |i1| + |i2| + |i3| = 1

2π
√

π

3α
2
3

× V
1
3 |i1| + |i2| + |i3| = 2; i1, i2, i3 = 0,±1

π
4α2 |i1| + |i2| + |i3| = 3; i1, i2, i3 = ±1

(15)

Integration strategies for generating filtered potentials
In order to make the generation of the filtered potentials manageable, the following
integrals,

I1(G) = 4π
(VBZ)2

∫∫

V̄BZ

1
|G + l − k|2 dkdl (16)

(for G vectors not inside the first and second Brillouin zone),

I2(G) = 4π
(VBZ)2

∫∫

V̄BZ

1 − e−α|G+l−k|2

|G + l − k|2 dkdl, (17)

and

I3(G) = 4π
(VBZ)2

∫∫

V̄BZ

e−α|G+l−k|2

|G + l − k|2 dkdl (18)

(for G vectors inside the first and second Brillouin zone), which all have positive values,
have to be integrated accurately and efficiently. The integrands in the I1 and I2 integrals
are smooth and can be numerically integrated using standard trapezoidal, Simpson, or
other polynomial integration strategies. However, these integrals are expensive to evalu-
ate, because they are six-dimensional. The I3 integrals are even more difficult to integrate,
because not only are they six-dimensional, they also have very stiff integrands (they are
singular at |G+l−k| = 0) and cannot be numerically integrated with standard integration
strategies accurately.
Another complication in evaluating these integrals is the integration volumes (i.e. the

Brillouin zone) may be trapezoidal shaped rather than cubic. This complication can be
dealt with by introducing the scaled coordinates (i.e. fractional coordinates) ξ1, ξ2, ξ3 for
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k, and ζ1, ζ2 ζ3 for l. These coordinates are defined by the following linear transformations

k = b1ξ1 + b2ξ2 + b3ξ3
l = b1ζ1 + b2ζ2 + b3ζ3

where b1, b2, and b3 are the reciprocal lattice vectors, and the Jacobian of these two trans-
formations is J = b1 · (b2 × b3) = VBZ . Using this linear transformation, the above
six-dimensional integrals can be recast as

I1 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

f1(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3

I2 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

f2(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3

I3 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

f3(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3

where the kernel functions are defined as

f1(γ1, γ2, γ3) = f̃1(R2(γ1, γ2, γ3)) (19)

f2(γ1, γ2, γ3) = f̃2(R2(γ1, γ2, γ3)) (20)

f3(γ1, γ2, γ3) = f̃3(R2(γ1, γ2, γ3)), (21)

with

f̃1(R2) = 4π
1
R2 (22)

f̃2(R2) = 4π
1 − e−αR2

R2 (23)

f̃3(R2) = f3(R2) = 4π
e−αR2

R2 , (24)

R2(γ1, γ2, γ3) = |G − b1γ1 − b2γ2 − b3γ3|2, (25)

and γi = ξi − ζi for i = 1, 2, 3. We note that in the above and subsequent labeling of the
functions I1, I2, and I3, the explicit inclusion of G in them has been removed to make the
formulas more readable.

Reducing the six-Dimensional I1 and I2 integrals to three-Dimensional integrals

The integrals I1 and I2 can easily be reduced to three-dimensional integrals by introducing
the following linear coordinate transformations

γi = ξi − ζi

ηi = ξi + ζi

where i = 1, 2, 3. The Jacobians for each component of this transformation is |J| = 1
2 and

the limits of integration in the transformed variables are shown in Fig. 2.
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Fig. 2 Illustration of the range of integration over the Cartesian coordinates ξi and ζi and the linear
transformed coordinates γi and ηi used in Eq. 26

Using this transformation, the integration over each ξi and ζi pair is converted to
∫ 1

2

− 1
2

∫ 1
2

− 1
2

f (ξi − ζi)dξidζi =
∫ 0

−1

f (γi)
2

(∫ 1+γi

γ2=−1−γi
dηi

)
dγi

+
∫ 1

0

f (γi)
2

(∫ 1−γi

−1+γi
dηi

)
dγi

=
∫ 0

−1

f (γi)
2

(2 + 2γi)dγi

+
∫ 1

0

f (γi)
2

(2 − 2γi)dγi

=
∫ 1

−1
f (γi)(1 − |γi|)dγi, (26)

and combining these transformations for each pair results in the overall integration of I1
and I2 being simplified to the following three-dimensional integrals

I1 =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f1(γ1, γ2, γ3)(1 − |γ1|)(1 − |γ2|)(1 − |γ3|)dγ1dγ2dγ3 (27)

I2 =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f2(γ1, γ2, γ3)(1 − |γ1|)(1 − |γ2|)(1 − |γ3|)dγ1dγ2dγ3. (28)

The I1 integral can be rewritten for large G, i.e. outside the first Brillouin zone, into the
following generalized multipole form

I1 =
∞∑

n=0

4π
|G|n+2

[n/2]∑

k=0

n−2k∑

m=−n+2k
Mn

k,mTn−2k,m(Ĝ) (29)

with

Mn
k,m =

∫ 1

−1

∫ 1

−1

∫ 1

−1
ρ(γ1, γ2, γ3)Qn

k,m|K|nTn−2k,m(K̂)dγ1dγ2dγ3 (30)

K = b1γ1 + b2γ2 + b3γ3 (31)

ρ(γ1, γ2, γ3) = (1 − |γ1|)(1 − |γ2|)(1 − |γ3|) (32)

Qn
k,m = Nn−2k,m

( 12 )k(1)n−k(1 + 2n − 4k)
k! ( 32 )n−k

(33)
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Nl,m =
{
1 for m = 0
2 (l−|m|)!

(l+|m|)! for |m| > 0
(34)

Tl,m(x̂) =

⎧
⎪⎨

⎪⎩

Pl,|m|(cos θ) for m = 0
Pl,|m|(cos θ) cos |m|φ for m > 0
Pl,|m|(cos θ) sin |m|φ for m < 0

(35)

where Pl,|m|(cos θ) is an associated Legendre polynomial (with (−1)m factor omitted) and
x̂ = (cosφ sin θ , sinφ sin θ , cos θ). This formula is straightforward to derive by using the
expansion of Gegenbauer polynomials in terms of Legendre polynomials (Rainville 1960).
This form can be used to simplify the computation of the I1 integrals needed to compute
the filtered potentials. Also, with this form it is easy to show that for larger unit cells (i.e.
smaller reciprocal cells) the I1 integrals essentially reduces down to be just 4π

G2 .

Changing the ranges of integration and using spherical coordinates to simplify the I3
integrals

By shifting the center of the I3 integrals to be atG (forG vectors inside the first and second
Brillouin zone), they can be recast as double volume integrals

I3 = 4π
(VBZ)2

∫∫

V̄BZ

e−α|G+l−k|2

|G + l − k|2 dkdl

= 4π
(VBZ)2

∫

V̄k

∫

V̄l

e−α|l−k|2

|l − k|2 dkdl

where the volumes span different regions of space, i.e. the volumes are located on top of
each other or next to each other as shown in Fig. 3. Note, this change in the center of
integration produces in 27 different integrals.
For example, the ranges of integration for the 6 face sharing volumes are replaced by

changing the ranges of integration for one pair of {ξi, ζi} to be from
∫ 1

2

− 1
2

∫ 1
2

− 1
2

dξidζi →
∫ 0

−1

∫ 1

0
dξidζi (36)

Fig. 3 The four types of double volumes spanned in the calculation of the double volume integral, I3 (1
same, 6 face-sharing, 12 edge-sharing, 8 corner-sharing)
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Fig. 4 Illustration of the range of integration over the Cartesian coordinates ξi and ζi and the linear
transformed coordinates γi and ηi used in Eq. 40

e.g.

I3 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 0

−1

∫ 1

0
f3(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3. (37)

Similarly, the ranges of integration for the 12 edge-sharing and 8 corner-sharing volumes
are obtained by replacing two and three pairs of {ξi, ζi} respectively, e.g.

I3 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 0

−1

∫ 1

0

∫ 0

−1

∫ 1

0
f3(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3, (38)

and

I3 =
∫ 0

−1

∫ 1

0

∫ 0

−1

∫ 1

0

∫ 0

−1

∫ 1

0
f3(ξ1 − ζ1, ξ2 − ζ2, ξ3 − ζ3)dξ1dζ1dξ2dζ2dξ3dζ3. (39)

For these alternative ranges of integration, we again transform from ξi and ζi variables to
γi and ηi variables using

γi = ξi − ζi

ηi = ξi + ζi

The Jacobian for this transformation is |J| = 1
2 and the limits of integration in the

transformed variables will be
∫ 0

−1

∫ 1

0
f (ξi − ζi)dξidζi =

∫ 1

0

f (γi)
2

(∫ ηi=γi

ηi=−γi
dηi

)
dγi

+
∫ 2

1

f (γi)
2

(∫ ηi=2−γi

ηi=−2+γi
dηi

)
dγi

=
∫ 1

0
γif (γi)dγi +

∫ 2

1
(4 − 2γi)f (γi)dγi (40)

∫ 1

0

∫ 0

−1
f (ξi − ζi)dξidζi =

∫ −1

−2

f (γi)
2

(∫ ηi=2+γi

ηi=−2−γi
dηi

)
dγi

+
∫ 0

−1

f (γi)
2

(∫ ηi=−γi

ηi=γi
dηi

)
dγi

=
∫ −1

−2
(4 + 2γi)f (γi)dγi +

∫ 0

−1
−γif (γi)dγi (41)
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These integrals can be simplified further by noting the decay parameter α is chosen
such that f (|γi| ≥ 1) = 0, i.e.

∫ 0

−1

∫ 1

0
f (ξi − ζi)dξidζi ≈

∫ 1

0
γif (γi)dγi =

∫ 1

0
|γi|f (γi)dγi (42)

∫ 1

0

∫ 0

−1
f (ξi − ζi)dξidζi ≈

∫ 0

−1
−γif (γi)dγi =

∫ 0

−1
|γi|f (γi)dγi (43)

Combining these transformations with the transformations in Eq. 26 allows one to sim-
plify the various I3 integrals to be three-dimensional integrals, where the 1 same integral
is

Isame,(θ=0...π ,φ=0...2π)

3,q=(0,0,0) =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)(1 − |γ2|)(1 − |γ3|)dγ1dγ2dγ3,

the 6 face-sharing integrals are

Iface,(θ=0...π ,φ=−π/2...π/2)
3,q=(1,0,0) =

∫ 1

−1

∫ 1

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)(1 − |γ3|)dγ1dγ2dγ3

Iface,(θ=0...π ,φ=π/2...3π/2)
3,q=(−1,0,0) =

∫ 1

−1

∫ 1

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)(1 − |γ3|)dγ1dγ2dγ3

Iface,(θ=0...π ,φ=0..π)

3,q=(0,1,0) =
∫ 1

−1

∫ 1

0

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2|(1 − |γ3|)dγ1dγ2dγ3

Iface,(θ=0...π ,φ=π ...2π)

3,q=(0,−1,0) =
∫ 1

−1

∫ 0

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2|(1 − |γ3|)dγ1dγ2dγ3

Iface,(θ=0...π/2,φ=0...2π)

3,q=(0,0,1) =
∫ 1

0

∫ 1

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)(1 − |γ2|)|γ3|dγ1dγ2dγ3

Iface,(θ=π/2...π ,φ=0...2π)

3,q=(0,0,−1) =
∫ 0

−1

∫ 1

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)(1 − |γ2|)|γ3|dγ1dγ2dγ3,

the 12 edge-sharing integrals are

Iedge,(θ=0...π ,φ=0...π/2)
3,q=(1,1,0) =

∫ 1

−1

∫ 1

0

∫ 1

0
f3(γ1, γ2, γ3)|γ1||γ2|(1 − |γ3|)dγ1dγ2dγ3

Iedge,(θ=0...π ,φ=π/2...π)

3,q=(−1,1,0) =
∫ 1

−1

∫ 1

0

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2|(1 − |γ3|)dγ1dγ2dγ3

Iedge,(θ=0...π ,φ=π ...3π/2)
3,q=(−1,−1,0) =

∫ 1

−1

∫ 0

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2|(1 − |γ3|)dγ1dγ2dγ3

Iedge,(θ=0...π ,φ=3π/2...2π)

3,q=(1,−1,0) =
∫ 1

−1

∫ 0

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1||γ2|(1 − |γ3|)dγ1dγ2dγ3

Iedge,(θ=0...π/2,φ=−π/2...π/2)
3,q=(1,0,1) =

∫ 1

0

∫ 1

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)|γ3|dγ1dγ2dγ3

Iedge,(θ=0...π/2,φ=π/2...3π/2)
3,q=(−1,0,1) =

∫ 1

0

∫ 1

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)|γ3|dγ1dγ2dγ3

Iedge,(θ=π/2...π ,φ=−π/2...π/2)
3,q=(1,0,−1) =

∫ 0

−1

∫ 1

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)|γ3|dγ1dγ2dγ3

Iedge,(θ=π/2...π ,φ=π/2...3π/2)
3,q=(−1,0,−1) =

∫ 0

−1

∫ 1

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1|(1 − |γ2|)|γ3|dγ1dγ2dγ3
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Iedge,(θ=0...π/2,φ=0...π)

3,q=(0,1,1) =
∫ 1

0

∫ 1

0

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2||γ3|dγ1dγ2dγ3

Iedge,(θ=0...π/2,φ=π ...2π)

3,q=(0,−1,1) =
∫ 1

0

∫ 0

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2||γ3|dγ1dγ2dγ3

Iedge,(θ=π/2...π ,φ=0...π)

3,q=(0,1,−1) =
∫ 0

−1

∫ 1

0

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2||γ3|dγ1dγ2dγ3

Iedge,(θ=π/2...π ,φ=π ...2π)

3,q=(0,−1,−1) =
∫ 0

−1

∫ 0

−1

∫ 1

−1
f3(γ1, γ2, γ3)(1 − |γ1|)|γ2||γ3|dγ1dγ2dγ3,

and the 8 corner-sharing integrals are

Icorner,(θ=0...π/2,φ=0...π/2)
3,q=(1,1,1) =

∫ 1

0

∫ 1

0

∫ 1

0
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=0...π/2,φ=π/2...π)

3,q=(−1,1,1) =
∫ 1

0

∫ 1

0

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=0...π/2,φ=π ...3π/2)
3,q=(−1,−1,1) =

∫ 1

0

∫ 0

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=0...π/2,φ=3π/2...2π)

3,q=(1,−1,1) =
∫ 1

0

∫ 0

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=π/2...π ,φ=0...π/2)
3,q=(1,1,−1) =

∫ 0

−1

∫ 1

0

∫ 1

0
f3(γ1, γ2, γ3)|γ1|γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=π/2...π ,φ=π/2...π)

3,q=(−1,1,−1) =
∫ 0

−1

∫ 1

0

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=π/2...π ,φ=π ...3π/2)
3,q=(−1,−1,−1) =

∫ 0

−1

∫ 0

−1

∫ 0

−1
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3

Icorner,(θ=π/2...π ,φ=3π/2...2π)

3,q=(1,−1,−1) =
∫ 0

−1

∫ 0

−1

∫ 1

0
f3(γ1, γ2, γ3)|γ1||γ2||γ3|dγ1dγ2dγ3.

Even though these integrals have been reduced to three-dimensions, they still cannot
be integrated accurately in their current form, because the integrand f3 is singular ( 1/R2)
at γ1 = γ2 = γ3 = 0. This singularity in the integration can be removed by transforming
to γ1, γ2, γ3 to spherical coordinates using

γ1 = r cosφ sin θ

γ2 = r sinφ sin θ

γ3 = r cos θ .

By changing the integration variables, the I3 integrals can be written as

I3 =
∫∫∫

f3(γ1, γ2, γ3)w(γ1, γ2, γ3)r2dr sin θdθdφ

=
∫∫∫

4π
e−αR2(γ1,γ2,γ3)

R2(γ1, γ2, γ3)
w(γ1, γ2, γ2)r2dr sin θdθdφ

where γi(r, θ ,φ) are now functions of r, θ and φ; R2(γ1, γ2, γ3) is evaluated using Eq. 25
with G = 0; and the function w(γ1, γ2, γ3) is used to represent the extra factors resulting
from changing the integration over ξi and ζi to γi. A key result of this change in inte-
gration is that the integrand is multiplied by r2, and since R2 is proportional to r2 the
transformed integrand, r2f3w is no longer singular and thus it can be integrated accurately
using numerical integration. To remove the 1

r2 factor in I3 it is convenient to introduce
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the following re-scaled γi,

γ̃1 = γ1
r

= cosφ sin θ

γ̃2 = γ2
r

= sinφ sin θ

γ̃3 = γ3
r

= cos θ .

I3 =
∫∫∫

4π
e−αr2R2(γ̃1,γ̃2,γ̃3)

R2(γ̃1, γ̃2, γ̃3)
w(γ1, γ2, γ3)dr sin θdθdφ (44)

Comparisons and approximations to filtered exchange potentials

In Figs. 5 and 6, various periodic filtered exchange potentials and their errors are shown
for a L = 20 simple cubic unit cell. TheVf 1 potential (solid black line) is the most accurate
of the potentials shown and it was generated with formulae for the I1, I2 and I3 integrals.
Even though this potential can be precomputed for use in a plane-wave code, the cost
of doing these calculations can become quite expensive for large Brillouin zones (O(N6),
whereN is number of grid points along each dimension of the 3D-FFT used in plane-wave
DFT methods), making it undesirable, especially for unit cell optimizations in which the
potentials are constantly being recomputed. This cost can be reduced to essentially the
same as the 4π

|G|2 potential (O(N3)), by replacing the I1 integrals with the more efficient
generalized multipole form of Eq. 29. This potential (Vf 2 in Figs. 5 and 6 (dashed red
line)), is shown to produce nearly the same results as Vf 1. Making it reasonable to use in
a plane-wave DFT method.
The essential character of these potentials are that they mimic a 1/|R| potential within

a single unit cell, and then slightly flatten off near the unit cell boundary. For comparison,
the 1/|R| potential (for a simple cubic cell V (R = 0) = 2.380077/h where h = L/NFFT
with L being the side length) and traditional periodic Coulomb kernel Vf 3 = 4π

|G|2 (G �=
0) (dashed green line), as well as slight modifications to it, Vf 4 (dashed blue line), and
Vf 5 (dashed indigo line), are shown in Figs. 5 and 6. The Vf 4 and Vf 5 potentials were
modified by replacing the G vectors in the first Brillouin zone and G = 0, respectively
by I2 + I3. Note Vf 4 is the same as Vf 2 with nmax = 0. As can be seen from the plots the
traditional periodic form, Vf 3, has a large error and produces a kernel in real-space that
is significantly below Vf 1. The Vf 4 and Vf 5 potentials are considerably better and appear
to produce the correct long range behavior which is close to 1/|R|, however, the overall
errors are still fairly significant. Finally, the Vf 6 potential (dashed dark green line), i.e.

Vf 6(R) =
1 −

(
1 − e−

(
R

Rcut

)N+2
)N

R
,

is the cutoff Coulomb kernel used in our prior exchange paper based on the Wannier
orbitals. The design of this cutoff kernel is chosen to remove the interactions between
redundant periodic images of Wannier orbitals, because of the long-range nature of
the Coulomb potential. However, it should be noted that below cutoff radius the cutoff
Coulomb kernel, while tracking the other kernels, has slightly larger values which become
more pronounced for larger R. As a result the Wannier kernel will produce slightly larger
exchange energies for systems in which a localization procedure produces very localized
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Fig. 5 Filtered exchange potentials and their errors with respect to Vf1(R) are plotted in real-space along the
x-axis for an FFT=32x32x32 L = 20 simple cubic unit cell. The Cartesian I1, I2 and mulipole integrals
(nmax = 10) were computed using Simpson integration with a 228x228x228 grid in γ1, γ2 and γ3. The radial
I3 integrals were computed using Simpson integration with a 432x432x432 grid in r, θ and φ. The parameters
for Vf6 were chosen to be Rcut = 8 and N = 8. In the figure, Vf1 is the most accurate definition of the kernel,
Vf2 is generated with a more efficient generalized multipole form, Vf3 is the traditional periodic Coulomb
kernel, Vf4 and Vf5 are further approximations to Vf2, Vf6 is the cutoff Coulomb kernel, and 1/R is the simple
Coulomb kernel for free space boundary conditions

wavefunctions, i.e. systems with large band gaps. Also the Vf 6 potential appears to be
close to the Vf 4 and Vf 5 potentials for |R| < Rcut .

Applications
All calculations in this study were performed using the pseudopotential plane-wave
program (NWPW module) contained in the NWChem computational chemistry pack-
age (Valiev et al. 2010). For the DFT calculations, both the gradient corrected PBE96
(Perdew et al. 1996) and hybrid PBE0 (Adamo and Barone 1999) exchange correlation
potentials were used. For the electron transfer calculations, open-shell spin-unrestricted
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Fig. 6 Filtered exchange potentials plotted in real-space in different regions along the x-axis for an
FFT=32x32x32 L = 20 simple cubic unit cell

Hartree-Fock (UHF) broken-symmetry wavefunctions were used to represent the diabatic
wavefunctions. The valence electron interactions with the atomic core are approximated
with generalized norm-conserving Hamann (1989) or Troullier-Martins (1991) pseu-
dopotentials modified to the separable form suggested by Kleinman and Bylander (1982).
A brief description of the pseudopotentials used in this study is given in Appendix 4.
The exchange integrals in the hybrid-DFT and electron transfer calculations were per-
formed using the filtered exchange kernel described above with nmax = 10, and also with
the Wannier orbital based screened Coulomb kernel from the prior work of Bylaska et al.
(Bylaska et al. 2011a) with parameters Rcut = 8 Bohrs and N = 8.

Inclusion of exchange in organic reactions: addition of halogens to the carbon-carbon

double bond

We begin our testing of the filtered exchange potential by examining the reaction path-
way for the electrophillic addition of a Cl2 molecule onto the carbon-carbon double
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bond in ethene. This well known reaction is extremely slow and to make it feasible it
is often catalyzed with an Iron(III) chloride solid. It is also important in production of
1,2-dichloroethane, which is an intermediate for other organic compounds such as vinyl
chloride. As a well known reaction it is one of the first reactions students learn about
in organic chemistry. While seemingly simple, its reaction pathway is surprising to stu-
dents and a challenge to model. The addition of halogens to alkenes is believed to involve
two steps, where the first involves the formation of chloriran-1-ium, a cyclic chloronium
cation (SMILES: C1C[Cl+]1), and a chloride, and then is subsequently followed by the
addition of the chloride (Morrison and Boyd 1992). However, it should be noted that in
the gas phase the reaction energy to form the chloriran-1-ium and chloride is well over
100 kcal/mol and unlikely to occur. Prior calculations by Kurosaki (2000) have shown that
the lowest transition state of the gas-phase reaction is the extraction of a radical Cl from
Cl2 by C2H4, after which the radicals recombine to form C2H4Cl2.
The foremost challenge to modeling this type of reaction with a periodic plane-wave

program has been that standard DFT methods significantly underestimate the reaction
barrier for this type of reaction and are not reliable. Hybrid DFT methods are thought
to produce higher and more accurate barrier heights (Nachtigall et al. 1996; Andzelm et
al. 1995; Zhao et al. 2005). Moreover, this type of basic organic reaction, in which the
bonding is primarily covalent, is expected to be well described by the Wannier exchange
methods, and is thus a good test of the consistency of our newly developed exchange
potential with prior exact exchange implementations for isolated systems.
The reaction pathway for the addition of Cl2 to the double bond in ethene (C2H4) is

shown in Figs. 7 and 8. As expected, the hybrid-DFT PBE0 calculations produce a reaction
pathway with a higher barrier by ≈10 kcal/mol than the regular DFT PBE calculations,
and the filtered periodic and Wannier exact exchange kernels produced nearly identical
reaction energy pathways. These calculations were carried out in a periodic FCC unit cell
with L=20.109 Å at a cutoff energy of 100 Ry. Standard pseudopotentials contained in
the NWChem program package (see Appendix 4) and bothWannier and filtered periodic
exact exchange kernels were used in these calculations. These potential energy surfaces
were computed with the PBE and PBE0 exchange-correlation potentials.
In Fig. 7, the pathway results are shown from a series of optimizations using a

"bondings" penalty function,

Epenalty = K
2

(γ − γ0)
2 (45)

where the collective variable (or reaction coordinate) γ is defined as the difference
squared between the sum of bonds broken and the sum of the bonds made, i.e.

γ = |R(Clx) − R(Cly)|2 − |R(Ca) − R(Clx)|2 − |R(Cb) − R(Cly)|2. (46)

and γ0 are constants used to target the reaction coordinate. The target values for the
reaction coordinate γ0 were chosen to be between -11.0 Bohr2 and 1.0 Bohr2, and the
spring constant was set to K = 1 Hartree/Bohr2.
To further quantify this reaction we also determined saddle points and their corre-

sponding reaction pathways using the intrinsic reaction coordinate (IRC). The IRC is
defined as the minimum energy reaction pathway in mass-weighted Cartesian coor-
dinates between the transition state and the reactants and products (Fukui 1981). In
these calculations, the saddle points were optimized using the Sella optimization package
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Fig. 7 DFT (PBE) and hybrid-DFT (PBE0) results for the ethene + Cl2 → 1,2-dichloroethane addition reaction
from periodic plane-wave DFT calculations. Representative geometries are illustrated along the pathway.
Results using Wannier and filtered periodic exact exchange kernels are shown. The hybrid-DFT PBE0
calculations contain 0.25 exact exchange

(Hermes et al. 2019; Hermes 2019) with a force convergence criterion of 10−4eV/Å. For
each of these transition states, the reaction pathways were then optimized using the
intrinsic reaction coordinate (IRC) with a force termination criterion of 0.05eV/Å. In
addition, we also performed Gaussian basis set calculations using the def2-TZVP basis set
(Weigend and Ahlrichs 2005) for comparison. These results, shown in Fig. 8, not only pro-

Fig. 8 Intrinsic reaction coordinate (IRC) calculations for the ethene + Cl2 → 1,2-dichloroethane addition
reaction from periodic plane-wave DFT calculations and non-periodic Gaussian DFT calculations. Results
using Wannier and filtered periodic exact exchange kernels are shown for the plane-wave hybrid-DFT PBE0
calculations. The hybrid-DFT PBE0 calculations contain 0.25 exact exchange. One transition state (TS1) was
found with the DFT PBE calculations, and two different transition states (TS1 and TS2) were found in the
hybrid-DFT PBE0 calculations. The geometries are illustrated as TS1 and TS2 for the two different transition
states
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duced nearly identical results between the filtered periodic and Wannier exact exchange
kernels, but also showed the plane-wave and Gaussian basis set calculations agreed very
well with one another.
Besides producing a slightly higher reaction barriers, these more extensive calculations

also showed that the PBE and PBE0 calculations produced subtly different results in that
only one transition state was found with the PBE calculations, whereas two transition
states were found with the PBE0 calculations. The first transition state had the same struc-
ture as was found with the PBE and penalty function method calculations, where one of
the chlorine atoms is preferentially bound to one carbon atom and the other is slight dis-
sociated. The second transition state, which is slightly higher in energy, has a structure
where the chlorine atoms are loosely bound to each carbon atom.

Band gaps of insulators

For our second application, we calculate the band gaps of two well known insulators
using DFT and hybrid-DFT. Several studies have shown that traditional DFT methods,
or density only exchange-correlations methods such as PBE96, significantly underesti-
mate the band gaps for semiconductors and insulators by up to 60%. This large error has
been attributed to the fact that density only exchange-correlation functionals do not have
a discontinuity at the Fermi level, because the effective potentials for the occupied and
unoccupied states in them are the same rather than different.
In Table 1, the band gaps of Al2O3 and SiO2 at the PBE96 DFT and hybrid PBE0 DFT

levels are reported. In these calculations a cutoff energy of 100 Ry was used, and the
sizes of the supercells were 80 and 72 atoms respectively for the two crystals. The default
pseudopotentials of NWChem were used (see Appendix 4). These results show that band
gaps at the hybrid-DFT level are considerably better than those at the conventional DFT
level, and that the filtered periodic kernel produced slightly lower band gaps then with
the Wannier exact exchange kernel. This is not unexpected since the Wannier kernel will
produce a slightly lower HOMO (highest occupied molecular orbital) energy and hence a
slightly larger band gap. The band gaps were estimated by taking the difference between
the HOMO and LUMO (lowest unoccupied orbital) single particle energies at the � point
using large supercells. With this approach only the minimal gaps at the � point or at any
point folded into the � point were obtained. However, since large unit cells were used,
many of the high-symmetry points in the Brillouin zone were covered.

Hybrid DFT calculations for the adsorption reaction of Au−
20 + H2

For our next application, we examine the reaction pathway for the adsorption of H2
onto the top site of tetrahedral Au−1

20 nanoparticle. Neutral and negatively charged gold
nanoparticles have gained interest in the catalysis community, because of their potential
catalytic activity and selectivity for a variety of chemical reactions important to industry

Table 1 Band Gaps (eV) of Selected Systems

Crystal PBE96 PBE0 PBE0 Exp.

(Wannier) (filtered periodic)

Al2O3 6.15 8.66 8.41 9.0

SiO2 6.25 8.81 8.67 8.9
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and environmental remediation, including anaerobic oxidation of methanol, CO oxida-
tion, NOx reduction, and selective hydrogenation of unsaturated hydrocarbons including
acrolein and nitroaromatic compounds. The selectivity seen in hydrogenation reactions
appears to be unsystematic. For example, the critical first step of H2 adsorption produces
different trends as a function of nanoparticle size for the elementary reaction energies
and reaction barriers; where the reaction of Au13+H2 is exothermic with a modest barrier,
Au20+H2 is slightly endothermic with a high barrier, and Au55+H2 is very endothermic
with a barrier in between Au13 and Au20.
The reaction pathway for the adsorption of H2 unto the top atom of the tetrahedral

Au−
20 nanoparticle is shown in Fig. 9. These calculations were carried out in a periodic

FCC unit cell with L=22.695 Å at a cutoff energy of 100 Ry. Both Wannier and filtered
periodic exact exchange kernels were used in these calculations. The potential energy
surface was computed with the PBE and PBE0 exchange-correlation potentials using a
"bondings" penalty function,

Epenalty = K
2

(γ − γ0)
2 (47)

where the collective variable (or reaction coordinate) γ is defined as the difference
squared between the sum of bonds broken and the sum of the bonds made, i.e.

γ = |R(Ha) − R(Hb)|2 − |R(Autop) − R(Ha)|2 − |R(Autop) − R(Hb)|2. (48)

and γ0 are constants used to target the reaction coordinate. The target values for the
reaction coordinate γ0 were chosen to be between -8.0 Bohr2 and -1.50 Bohr2, and the
spring constant was set to K = 1 Hartree/Bohr2.
Standard DFT methods are known to be unreliable for this type of reaction, because it

involves a neutral closed shell molecule interacting with a radical. Not surprisingly, the
hybrid-DFT PBE0 calculations produce different reaction pathways than the regular DFT

Fig. 9 DFT (PBE) and hybrid-DFT (PBE0) results for the Au−
20 + H2 adsorption reaction from periodic

plane-wave DFT calculations. Representative geometries are illustrated along the pathway. Results using
Wannier and filtered periodic exact exchange kernels are shown. The hybrid-DFT PBE0 calculations contain
0.25 exact exchange
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PBE calculations. In addition, both the filtered periodic andWannier exact exchange ker-
nels produced nearly identical reaction energy pathways, which suggests that both kernels
are equally valid for computing relative energies in large unit cell calculations.
However, somewhat surprising is the dramatic nature of the change of the curves at

large distances, which show that the hybrid DFT method with exact exchange (PBE0)
predicts an exothermic physi-adsorbed state and a near thermodynamic neutral chemi-
adsorbed state, whereas the DFT method (PBE) only predicts an endothermic chemi-
adsorbed state. At this point, it is uncertain which curve better represents reality. Future
work will focus on using other approaches for estimating the correlation energy such
the random phase approximation (RPA) andMuliti-Configurational Self-Consistent Field
(MCSCF) methods. We note, the filtered kernels presented in this work are currently
being used in the development periodic RPA and MCSCF methods.

Fe(II)/Fe(II) electron transfer calculations in annite

For our last application, we examine the electron transfer (ET) in annite, an Fe(II) con-
taining trioctahedral mica. The structure of this mica, shown in Fig. 10, contains Fe(II)
octahedral layers sandwiched between two (Si,Al) tetrahedral layers. During oxidation,
electrons may be removed from these Fe(II) ions, most likely resulting in localized Fe(III)
charge states that are expected to be mobile in which the hole on the Fe(III) hops to a
neighboring Fe(II) site (Rosso and Ilton 2003; 2005). This type of ET is conceptually quite
simple as it does not involve any bond breaking, complicated changes in electronic states,
or any long-range rearrangement of atoms typically found in ET reactions occurring in
a polar solvent. However, even for such a simple ET reaction, it still requires a "beyond
DFT method" to describe the localization of positive charge in the d-bands of the mate-
rial and its rate of transfer between Fe(II) ions. It should be noted that a major failing of
commonly used DFT functionals, such as PBE96, is that they cannot describe these types
of localized Fe(III) charge states. This is a well known failure, and it is a by-product of
these functionals containing self-interaction, which creates an artificial Coulomb barrier
to charge localization, even for systems where significant charge localization is expected.
One of the more computationally accessible (beyond DFT) ET methods available today

is the approach developed by Farazdel et al. (1990), and used extensively by Rosso et al.
(2003); Rosso and Ilton (2003); Rosso and Ilton (2005); Smith et al. (2006); Windus et al.
(2003); Skomurski et al. (2011); Skomurski et al. (2010); Kerisit et al. (2007); Kerisit and
Rosso (2006); Kerisit and Rosso (2005); Stack et al. (2004); Wang et al. (2008). This ET
method uses key ideas from semiclassical Landau-Zener theory for ET along with valence
bond theory to calculate the VAB electronic coupling matrix element. This method has
been extended to periodic systems Bylaska and Rosso (2018). A caveat of this method is
that it requires an accurate calculation of exact exchange with periodic boundary condi-
tions. In this previous work we used aWannier orbital based method to calculate periodic
exact change. We note that very recently, Behara and Dupuis have also been exploring the
use of approximate forms of this theory based on DFT+U method (Dudarev et al. 1998;
Anisimov et al. 1991), which does not need accurate exchange calculations, with some
success (Behara and Dupuis 2019). In this section, we demonstrate the use of the filtered
exchange potential with this ET method for hole transport in annite.
For the transition metal oxide systems, where the ET typically occurs by electron or

hole small polaron hopping, the Landau-Zener equation can be written (Holstein 1959a;
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Fig. 10 Illustration of the annite structure, which consists of alternating layers of ...Fe-(Si,Al)-K-(Si,Al)-Fe-
....polyhedra. (Top left) Polyhedra structure (brown- Fe octahedra, purple K - octahedra, blue - Si tetrahedra,
light blue - Al tetrahedra) of the annite crystal. (Bottom left) The spin down density from an unrestricted
Hartree-Fock calculation of the anntite supercell (K4Fe12Si12Al4O48H8) with one-electron removed from the
unit cell. When exact exchange is included in the calculations, the missing electron localizes on a single Fe
atom as shown. (Top right and Bottom Right) Top and side view of the annite supercell. The yellow octahedra
shows the location of a trans-Fe and the blue octahedra show locations for the cis-Fe

Holstein 1959b) in terms of VAB, temperature (T), transition state energy (�G†), and a
typical longitudinal phonon energy (�ν0) as

PA→B(QC) = 1 − exp
(

− 1
�ν0

( π

4�G†kT

)1/2
V 2
AB

)
. (49)

where PA→B(QC) is the probability of the system not transitioning (i.e. staying on the
adiabatic surface) from the ground-state to the first excited state at the transition state
geometry, QC , between the reactant state A and the product state B. Typically, this
formula is extended to account for multiple crossings and re-crossings through the
intersection region to properly describe this electron transmission. This modified trans-
mission factor κel, which is sometimes called the electron factor, is the probability of ET
after the system has evolved to QC , and is given by Newton and Sutin (1984)

κel = 2PA→B(QC)

1 + PA→B(QC)
. (50)

A nice feature of the semiclassical Landau-Zener approach for estimating non-adiabatic
ET rates knon−adiabatic is that these rates relate to the adiabatic rates kadiabatic as

knon−adiabatic ≈ κel ∗ kadiabatic. (51)

This approximate relation, which becomes more correct when nuclear tunneling and the
initial non-equilibrium effects are small (Garcia-Viloca et al. 2004; Reimers et al. 2015),
allows one to make use of standard molecular modeling techniques appropriate for the
adiabatic ET and then estimate the non-adiabatic rate by scaling it down by κel.
Figure 11 and Table 2 show the results for the ET between two neighboring cis-Fe

in annite along with comparisons to prior ET calculations with small cluster models by
Rosso and Ilton (Rosso and Ilton 2003). For these calculations, internal energy differences
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Table 2 Calculated electron-transfer parameters for nearest-neighbor hopping between two cis-Fe
octahedra

cis-Fe/cis-Fe cis-Fe/cis-Fe

(filtered periodic) (Cluster Model (Rosso and Ilton 2003))

�Erxn -0.053 eV 0.000 eV

R 3.11 3.21 Å

(product state 3.12 Å)

λ/4 0.435 eV 0.503 eV

�E†diabatic 0.438 eV 0.480 eV

�E†adiabatic 0.337 eV 0.416 eV

VAB 0.102 eV 0.064 eV

PA→B 0.999 0.934

κelc 1.000 0.966

R is the distance between the iron atom with a localized electron and its neighbor.
λ/4 is the Marcus estimation of the diabatic activation energy.
�E†diabatic is diabatic activation energy.
�E∗

adiabatic is the adiabatic activation energy.
VAB is the electronic coupling.
PA→B is the adiabaticity computed using �ν0 = 0.012 eV.
κelc is the steady-state transmission factor.

(�E) rather than free energies differences (�G) were used. The differences of the enthalpy
and entropy corrections due to vibrations orthogonal to the generalized reaction path are
expected to be small in this system.
In these calculations, the supercell contained 88 atoms (K4Fe12Si12Al4O48H8) with

lattice parameters determined using the PBE96 exchange-correlation functional. The
plane-wave calculations used a cutoff energy of 100 Ry and the ion-electron interactions
were described using a small core relativistic pseudopotential for Fe. It was shown in
the previous work by Bylaska and Rosso (2018) that a small core pseudopotential was
needed to produce reliable results, as a large core pseudopotential for Fe predicted over-
laps and energy splittings that were too large (i.e., more adiabatic). We used open-shell
spin-unrestricted Hartree–Fock (UHF) broken-symmetry wavefunctions to represent the

Fig. 11 Calculated diabatic and adiabatic potential energy surfaces for electron transfer between two
nearest neighbor cis-Fe octahedra in annite
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diabatic wave functions in the calculation of ET matrix elements HAB and SAB. We note
that MCSCF and other approaches such as constrained DFT and localization methods
could also be used to define diabatic wave functions, but they were not used in these cal-
culations. To localize the hole on any of the Fe atoms in the cell a spin-penalty function
was used.
A plot of the potential energies for the diabatic and adiabatic states of�A(Q) and�B(Q)

(i.e.,HAA andHBB) as a function of the ET reaction coordinate,Q, are shown in Figure 11.
To calculate the valence bond diabatic states as a function of Q, the geometry at QA was
taken to be the optimized geometry in which the hole was localized on a cis-Fe, and the
geometry at the other end point QB was defined by localizing the hole on a neighbor-
ing cis-Fe. As expected, the energies of QA and QB were nearly the same. The geometries
between QA and QB were then defined using a simple linearized reaction coordinate (the
slight error the optimization of QA and QB is not expected to affect the reaction coor-
dinate at the transition state). The adiabatic curves were then determined by calculating
the matrix elements HAA, HBB, HAB, and SAB at each value of Q and then diagonaliz-
ing the 2 × 2 generalized eigenvalue problem (See Bylaska and Rosso (2018)) for details
on the computational procedure). The Landau-Zener equation was used to calculate the
probability PA→B(QC) of the system not transitioning (i.e., staying on the adiabatic sur-
face) from the ground-state to the first excited state at the transition state geometry, QC ,
between the reactant state A and the product state B at which the electron is transferred.
As can be seen from the results, the nearest-neighbor ET between cis-Fe produced

a large splitting, and as a result, the ET is predicted to be adiabatic. Our work agrees
with the assertion by Sherman (1987) and the previous results of Rosso and Ilton based
on cluster models that have predicted this type of ET to be adiabatic (Rosso and Ilton
2003). However, the adiabatic splitting for the ET at the transition state was found in
our calculations to be 0.102 eV, whereas Rosso and Ilton found it to be 0.064 eV. The
difference in results is somewhat larger than seen in previous comparisons between
these models for polaron hopping in edge-sharing Fe octahedral chains (Bylaska and
Rosso 2018). Despite these differences, the electronic coupling, VAB, appears to be con-
sistently (inversely) correlated to the distance between Fe atoms involved in the ET.
The cluster model predicts a larger distance (3.21 Å) and smaller VAB than the peri-
odic model. The distance seen in the periodic model (3.11 Å) is closer to that found in
the original crystal structure, which suggests that the underlying lattice constrains the
amount of distortion coming from the electron hole, a strength of the periodic plane-
wave approach over use of small cluster models. However, another possibility is that
the size of the supercell, which contains a 4 × 3 2D-grid of Fe octahedra, needs to be
increased, since using a larger supercell will loosen up the structure to allow for larger
distortions.
Finally, these results further support the use of plane-wave electronic structuremethods

containing accurate implementations of periodic exchange for modeling charge transfer
process in solids. With large scale high-performance computers these methods are capa-
ble of performing ab initio molecular dynamics efficiently enough to carry out standard
rare event simulations (e.g., potential of mean force, metadynamics, TAMD, or Markov
state modeling with ab initio molecular dynamics) with ground-state adiabatic surfaces to
find adiabatic ET rates, while at the same time being accurate enough to model ET rates
and transmission factors, κel
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Conclusion
In summary, we have developed a new method for accurately calculating exact change
integrals in periodic systems that is based on a Filon-like integration approach in which
an effective screened potential is defined using a narrow integration that accounts for
the singularity in the two-electron Coulomb integrand. The technique developed can
readily be employed in plane-wave DFT programs, and it is applicable to both con-
fined and extended systems, as well as AIMD simulations and periodic electron transfer
calculations.
This new development has been demonstrated on several non-trivial applications,

including hybrid-DFT calculations for the chlorination of ethene, adsorption of H2 onto
an Au−

20 nanoparticle, and electron hole transfer calculations in an Fe(II) containing mica,
annite. These results show it to be accurate, and computationally this technique for evalu-
ating periodic exact exchange has the same cost and at least the same amount of accuracy
for large � point calculations as our previous implementation based on based on max-
imally localized orbitals (Bylaska et al. 2011a). In addition, this new method has more
flexibility in that several other approximate filtered exchange potentials can be derived
with varying degrees of accuracy, including ones that can be used with Monkhorst-Pack
Brillouin zone sampling. However, a current drawback of themethod is that it requires the
I2 and I3 integrals in Eqs.17-18 to be calculated with high accuracy. Future work will focus
on improving the numerical convergence of these integrals with the singular integrands,
as well as generalizing the method to evaluate the two-electron integrals between two
determinant states (used by MCSCF and CASSCF methods), and evaluate two-electron
integrals containing 4 molecular orbitals (used by many-body methods based on second
quantization such as CI, CCSD, etc.). We are optimistic that this new development activ-
ity will be able to overcome the limitations of screened Coulomb interactions, and other
highly-engineered approaches such as DFT+U (Dudarev et al. 1998; Anisimov et al. 1991),
and make it easier to extend accurate many-body chemistry calculations to use periodic
boundary conditions in the near future.

Appendix A: Generalized norm conserving pseudopotentials
The valence electron interactions with the atomic core are approximated with a general-
ized norm-conserving (Hamann 1989) or Troullier and Martins (1991) pseudopotentials
modified to a separable form suggested by Kleinman and Bylander (1982). The input
decks used to generate the pseudopotentials in this study can be obtained from the
following directory on Github, https://github.com/nwchemgit/nwchem/tree/master/src/
nwpw/libraryps. Hamann pseudopotentials were used for hydrogen, carbon, oxygen, and
silicon, and Troullier-Martins pseudopotentials were used for potassium, gold, and iron.
The pseudopotentials were constructed using the following core radii, H: rcs=0.8 a.u
and rcp=0.8 a.u.; C: rcs=0.8 a.u, rcp=0.85 a.u, and rcd=0.85 a.u.; O: rcs=0.7 a.u, rcp=0.7
a.u and rcd=0.7 a.u; Si: rcs=1.059 a.u, rcp=1.286 a.u and rcd=1.286 a.u.; K: rcs=4.2 a.u,
rcp=4.05 a.u and rcd=3.75 a.u., rsemicore=2.0 a.u.; Au: rcs=2.0761953 a.u, rcp=3.0973349
a.u, rcd=1.9261744 a.u. and rsemicore = 1.2 a.u.; and Fe: rcs=1.8 a.u, rcp=1.8 a.u, rcd=1.8
a.u. For Fe, the 3s and 3p states are highly polarizable and for this element we gener-
ated the pseudo potential using a [Ne] core, where the 3s and 3p orbitals are placed in
the valence space. These potentials were generated using the PBE96 exchange correlation
functional.

https://github.com/nwchemgit/nwchem/tree/master/src/nwpw/libraryps
https://github.com/nwchemgit/nwchem/tree/master/src/nwpw/libraryps
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In carrying out plane-wave DFT calculations, the stiffness of the atom center electron
potential, ZI|r−RI | , needs be reduced for Kohn-Sham wave functions, ψi(r), to be expanded
in a plane-wave basis set. Pseudopotentials are one approach to do this that are widely
used (Pickett 1989). An important feature of pseudopotentials is that they can be defined
to varying degrees of accuracy, and it is typical to modify them in order that they have the
required accuracy for a particular calculation.
A significant advance in the development of the pseudopotential method was made by

Hamann et al. (1979) with the introduction of norm-conserving pseudopotentials. While
there are differences between various pseudopotential approaches, all popular pseudopo-
tentials adopt the basic prescription outlined the original work. These methods have
been highly developed in the condensed matter community and are well explained and
reviewed (Pickett 1989). The basic idea of pseudopotential is that the core region of the
atomic potential is replaced by a much slower varying function designed to specifically
reproduce the behavior of the valence wave functions in regions outside the core (pre-
sumed to be the bonding region). The smoothed potential has a node-less solution that
can be expanded by a smaller plane-wave basis. It can be shown that with proper care,
replacing the atomic potential with a pseudopotential will produce the same solutions
beyond the region of replacement, while also maintaining the normalization of the orbital
function.
In the norm-conserving pseudopotential, a pseudopotential for each total angular

momentum l is found from the direct inversion of the Schrödinger equation (with
a selected DFT functional) for an atom (Hamann 1989). This produces a non-local
pseudopotential of the form,

Vpsp = Vvalence
M (r) + V̂non−local(r, r′) = Vvalence

M (r) +
∑

l,m
Ylm(r̂)Vl(r)δ(r − r′)Y ∗

l,m(r̂′)

(52)

where Vvalence
M (r) is the Coulomb and exchange potential due to the (non active) valence

electrons, is the spherical harmonic defined by the angular momentum, l, and magnetic
quantum, m, numbers, r̂ is a unit vector in the r direction, and Vl(r) is the radial poten-
tial found from the inversion of the DFT solution to the radial Schrödinger equation
for the equivalent atomic problem (see reference Hamann et al. (1979)). The non-local
pseudopoential operator Vnon−local acts on a function ψi(r) by,

V̂non−localψi(r) =
∫ ∑

l,m
Ylm(r̂)Vl(r)δ(r − r′)Y ∗

l,m(r̂′)ψi(r′)dr′ (53)

This operator has a semi-local form, neither just local (radial) or fully separable (see
KB[Bylander, 1984 ]). In this semi-local form, the pseudopotential is computationally dif-
ficult to calculate with a plane-wave basis set, since the kernel integration is not separable
in r and r′ (see reference Kleinman and Bylander (1982)). To produce a more efficient cal-
culation while retaining as much of the atomic form as possible Kleinman and Bylander
approximated the form by,

V̂ KB
non−local = Vlocal(r) +

∑

l,m
Plm(r)hlP∗

l,m(r′) (54)

where the atom-centered projectors Plm(r) are of the form

Plm(r) =[Vl(r) − Vlocal(r)] ϕ̃l(r)Ylm(r̂) (55)
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Fig. 12 Comparison of the pseudowavefunctions (dashed lines) with the full-core atomic valence
wavefunctions (solid lines) for Fe3+. The lower panel shows the pseudopotentials

and the coefficient hl is

hl =
{
4π

∫ ∞

0
ϕ̃l(r)[Vl(r) − Vlocal(r)] ϕ̃l(r)Ylm(r̂)ϕ̃(r)dr

}−1
(56)

where ϕ̃(r) are the zero-radial node pseudo-wavefunctions of the potentials, Vl(r),
calculated in the atomic environment. Note that

V̂ KB
non−localϕ̃l(r)Ylm(r̂) = Vl(r)ϕ̃l(r)Ylm(r̂) (57)

i.e., that the fully non-local KB form preserves the form of the potential in the atomic
problem. The choice of the local potential Vlocal(r) is somewhat arbitrary, but for tran-
sition metals it is often chosen to be the Vl=0 potential. A larger series expansion in
pseudowavefunctions can be used to improve the fully local description of the semilocal
form. This leads to the general form

V̂non−local = Vlocal(r) +
∑

l,m

∑

n,n′
Plm(r)hn,n

′
l P∗

l,m(r′) (58)

Pseudopotentials are developed entirely from fitting atomic calculations and, therefore,
should not be considered as part of the data fitting process. Nevertheless, there are ques-
tions about accuracy of the representation, and in particular howmany φ̃nl(r) are required
to accurately represent the valence structure of the condensed system and how much
of the unscreened atomic potential is assigned as the core region (roughly speaking the
region removed).We have found for many 1st row transition metal systems that including
the 3s and 3p functions in the active space of the pseudopotential considerably improved
the agreement with the scattering data. The default pseudopotential included only the 3d
orbitals. Additional issues that have to be considered in the pseudopotential representa-
tion include the functional form used for Vl(r) and its parameterization that is obtained
by comparison to atomic calculations.
A key parameter in these fittings is the radius of the replacement region (aka core

region). The parameter to a large extent the smoothness of the pseudo potential (the larger
the region the smoother the pseudopotential). However, if this region is too large the bond
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formation will be effected and the pseudopotential representation will produce incorrect
bonding results. An example of the derived smooth pseudopotential and nodeless pseudo
wavefunctions is given Fig. 12 for the Fe3+ ion.

Epsp =
∑

σ=↑,↓

nσ
elc∑

i=1

nions∑

I=1

⎛

⎝〈
ψσ
i |VI

local|ψσ
i
〉 +

lImax∑

l=0

l∑

m=−l

nImax∑

n=1

nImax∑

n′=1

〈
ψσ
i |PInlm

〉
hIl,n,n′

〈
PIn′lm|ψσ

i
〉
⎞

⎠

(59)
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