
Materials TheoryCapolungo and TaupinMaterials Theory             (2019) 3:2 
https://doi.org/10.1186/s41313-018-0013-9

ORIGINAL ARTICLE Open Access

GD3: generalized discrete defect dynamics
Laurent Capolungo1* and Vincent Taupin2

*Correspondence: laurent@lanl.gov
1Materials Science and Technology
Division, Los Alamos National
Laboratory, Los Alamos NM87544,
USA
Full list of author information is
available at the end of the article

Abstract
A mesoscale model is introduced to study the dynamics of material defects lying at
interface junctions. The proposed framework couples the dynamics of discrete
dislocation and disclination lines. Disclinations are expected to be natural defects at
interface junctions; their presence serving the purpose of accommodating
discontinuities in rotation fields at material interface junctions. Crystallography-based
rules are proposed to describe the kinematics of disclination motion. A discrete-
continuous couple-stress framework, in which discrete defect lines are introduced as
plastic eigenstrains and eigencurvatures, is proposed to explicitly follow the dynamics
of interfacial defects. The framework is then applied to study

(
101̄2

)
twin transverse

propagation and thickening in magnesium. Focusing first on the case of a twin domain,
It is shown that a disclination based representation of twin domains allows for an
appropriate mechanistic description of the kinematics of shear transformations. In what
concerns twin thickening, the stability of defects at twin interfaces is further studied. To
this end, a 3D crater lying on a twin interface is described as a dipole of disclination
loops. Upon self-relaxation, it is found that out of plane motion of disclinations
followed by the nucleation of twinning dislocations can be activated; thereby showing
that conservative non-planar motion of disclinations can be thermodynamically
favorable; mechanism that had been postulated some 50 years ago.
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Introduction
In the context of multi-scale modeling, the current performance of discrete disloca-
tion dynamics (DDD) codes allows for a linkage between unit processes associated
with dislocation motion -as informed by atomistic simulations- and their collective
effects on both hardening and slip (Arsenlis et al. 2007; Bulatov et al. 1998; Devin-
cre and Kubin 1997; Fivel and Canova 1999; Ghoniem et al. 2000; Zbib et al. 1998).
With this, one can validate, select and calibrate, crystal plasticity based constitutive
laws. Examples of success include the quantification of: latent hardening effects result-
ing from both short and long-range interactions between dislocations (Bertin et al.
2014; Bulatov et al. 2006; Devincre 2013; Franciosi et al. 1980; Madec et al. 2003;
Kubin et al. 2008; Queyreau et al. 2009), the simultaneous effects of voids and self-
interstitial loops induced by irradiation on strength (Sobie et al. 2017a, b), etc. These
advances constitute critical steps towards the development of statistically representative,
microstructure and chemistry sensitive constitutive models in the very spirit of seam-
less multi-scale modeling as motivated in several seminal reviews in the field. Among
the several roadblocks that remain, focus is placed here on the treatment of material
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interfaces (Bilby 1955; Bollmann 1970; Frank 1950; Priester 2013; Sutton and Baluffi
1995), and their effects on strength, hardening and eventually ductility (Capolungo
et al. 2007; Hoagland et al. 2002; Mompiou et al. 2009; Wang and Ma 2004; Bayerschen
et al. 2016; Spearot and Sangid 2014). One notes that in the case of dislocations, albeit with
limitations pertaining to the treatment of the system dynamics that disregards entropic
effects, one can trace an explicit linkage between early static and two dimensional descrip-
tions of dislocations (i.e. line tension, stress field, effect on diffraction line broadening),
molecular statics and dynamics studies of dislocation core structures and their mobility
-often aided by density functional theory and minimum energy pathway search methods
- and discrete dislocation dynamics. However, such linkage remains lacking in the case
of defects present at material interfaces. Indeed, early as well as more recent topological
descriptions of admissible material defects provide for a two-dimensional registry of likely
interfacial defects (ID) in terms of disconnection, disclination or dispiration content. Let
us note that other ID based material interface representations have been proposed in the
literature. Some of these account for the fine scale atomic structure of the interface while
other -such as those in the lineage of the Frank Bilby and Bollman’s O-lattice theory -
focus mostly on the material macroscopic interface degrees of freedom. These viewpoints
have largely been enhanced by further considering the relationship between the proposed
description of the interface and the resulting energy. Further, the appropriateness of these
constructs can be validated against atomistic simulations. This was done for example in
the case of hetero-interfaces which have been recently represented as networks of discrete
dislocation lines (Vattré and Demkowicz 2015).
Despite these advances, there is a clear disconnect between these interface con-

structs and crystal plasticity constitutive models in which interface mediated plasticity
is accounted for. To address these shortcomings and to depart from a simple treat-
ment of material interfaces as impenetrable obstacles, different classes of DDD models
with increasing level of complexity have been developed. A first class of models con-
sists of introducing dislocation sources in both bulk and material interfaces, which
allows modeling the decomposition of dislocations at grain boundaries and the asso-
ciated plastic straining by glide (grain boundary sliding) and climb (diffusion), as
well as slip transfer (Ahmed and Hartmaier 2011; Quek et al. 2014, 2016). A second
class of models proposes to add slip transmission and re-emission criteria at material
interfaces, which can invoke critical shear stress (Fan et al. 2015), interfacial energy
(Li et al. 2009; Hou et al. 2009) -possibly as obtained from atomistic simulations (Zheng
et al. 2017)-, or line-tension (de Koning et al. 2002, 2003; Zhou and LeSar 2012). A third
class of models consists of explicitly modeling ID as well as their evolution and interac-
tions with bulk dislocations. Discrete dislocation networks were recently used to model
the migration of low angle mixed grain boundaries (Lim et al. 2012). Networks of mis-
fit dislocations where used to study Ni-based superalloys (Gao et al. 2015). Discrete
intrinsic dislocation networks were also used to simulate their complex interactions with
extrinsic dislocations (Fan et al. 2016; Liu et al. 2011, 2012; Yashiro et al. 2006). Discrete
dislocation networks can be built from coupled kinematic/energetic considerations
(Vattré and Demkowicz 2013, 2015; Vattré et al. 2014b; Vattré 2017a, b), or they can be
atomistically informed (Burbery et al. 2017; Wang et al. 2014).
In general, ID can adopt the form of dislocations (Vattré et al. 2014b), disclinations

(Muntifering et al. 2016; Reinholz et al. 2016; Rösner et al. 2011) and disconnections
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(Hirth and Pond 1996; Hirth and Pond 2006, 2016). Disconnections, consisting of a dislo-
cation and a step (Hirth and Pond 1996), were experimentally reported in several serrated
interfaces. They were shown to play a key role in mediating the motion of interfaces. This
is particularly true in the cases of twin boundaries and of interphase boundaries (Mom-
piou et al. 2009; Khater et al. 2012; Rajabzadeh et al. 2013; Hirth et al. 2016). Atomistic
simulations of the propagation of twins show that nucleation of serrations along the twin
boundary occurs concomitantly with the motion of material interface junctions located at
the twin tip (Xu et al. 2013). A body of work has suggested that these interface junctions
could be represented by disclination lines (Xu et al. 2013).
Focusing now on the case of disclinations. These rotational type line defects have been

found to be practical for describing material interfaces (Fressengeas et al. 2011; Romanov
and Kolesnikova 2009). This is the case for example of high-angle grain boundaries.
Alternatively, as previously stated disclinations have also been identified as themost likely
natural defects in specific regions of materials. This includes triple lines, twin tips, etc.
(Beausir and Fressengeas 2013; Bozhko et al. 2014; Cordier et al. 2014; Kolesnikova et al.
2016; Murayama et al. 2002; Rösner et al. 2011; Sun et al. 2016). Overall, whether disclina-
tions are a convenient mathematical object to describe material interfaces or are intrinsic
interfacial defects (similarly to dislocations) remains debated. One notes that such ques-
tion is complex as the diffraction signature of disclination fields cannot be uniquely
identified and as extinction conditions for disclinations cannot be derived for transmis-
sion electron microscopy. Further, while some have used disclinations as discrete static
objects, the detailed crystallography of disclination lines has not yet been postulated.
Thus far, networks of discrete wedge disclination lines were used to predict twin evolu-
tion in NiMnGa alloys (Reinholz et al. 2016).However a general and 3D consideration of
disclination motion was not proposed. This question includes that of the natural habit
planes of disclinations as well as of their out-of-plane motion. Remarkably, using a con-
tinuous description of incompatibilies in the elastic strain and curvature fields associated
with disclinations, it was shown that it can be kinematically admissible for a disclination
to act as a source/sink of dislocation (deWit 1970). However both the thermodynamics
and crystallography of this kinematic requirement have not been studied.
To address these questions, the present manuscript proposes a simple crystallographic

rule to identify potential habit planes of disclinations. Further, a generalized defect
dynamic framework is derived to predict both in plane and out of plane motion of discli-
nations and its relationship to dislocation emission. The original work of deWit (1970;
1973), who layed-out the foundations for the generalized treatment of line defects, is
therefore extended in this study to consider the full three-dimensional features associated
with disclination dynamics. We propose a Generalized Discrete Defect Dynamics

(
GD3)

model which combines the dynamics of discrete dislocation and of disclination lines. The
approach can be perceived as an extension of a recently proposed discrete-continuous
Fast Fourier Transform (FFT) DDDmodel (Bertin et al. 2015), to account for disclinations
in the context of a higher-order continuum Field Disclination and Dislocation Mechanics
(FDDM) framework (Fressengeas et al. 2011; Taupin et al. 2013).We apply the GD3 model
to the problem of the transverse propagation of

(
101̄2

)
twin domains in hexagonal close

packed magnesium (Partridge 1967). Among others, it is shown that a disclination based
construction of 3-dimensional twin domains can render the kinematics of the shear trans-
formation. Following this, GD3 is used to assess the stability, and the potential role of
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long prismatic-basal and pyramidal-pyramidal interfaces/steps on twin thickening.While
the existence of these large steps has been reported experimentally (Liu et al. 2016), to
date neither their stability nor their motion has been studied. In the context of a fully 3-
dimensional configuration, these defects are represented as a crater on the twin interface
which is formally described with a disclination dipole arrangement. As will be shown, the
simulations suggest a new mechanism whereby large steps along the twin interface could
decay by the emission of twinning dislocations. The results are qualitatively similar to
those predicted in Xu et al. (2013) via atomistic simulations and prove that the aforemen-
tioned dislocation sourcemechanism, proposed by DeWit (1970) is not only kinematically
admissible but also thermodynamically possible.

Generalized discrete defect dynamics
Useful mathematical notations are provided in the appendix. A small strain setting is
assumed. The material displacement field vector u is single-valued and continuous at any
point of the crystal. The distortion tensor, defined as the gradient of the displacement
U = grad u, is curl-free:

curl U = 0. (1)

The strain tensor ε is the symmetric part ofU, the rotation tensor ω its skew-symmetric
part and the associated rotation vector ω is:

ω = −1
2
ω : X = 1

2
curl u. (2)

It is also a single-valued continuous field. The gradient of the rotation vector is the
second order curvature tensor κ :

κ = gradω. (3)

The total curvature tensor is a compatible curl-free tensor, like the distortion tensor.
The total distortion and curvature tensors are additively decomposed into elastic and
plastic parts:

U = Ue + Up (4)

κ = κe + κp (5)

By decomposing the elastic and plastic distortion into strains and rotations, one also has
the relations:

curl εe = κ t
e − tr(κe)I (6)

curl εp = κ t
p − tr(κp)I. (7)

In the above two equations, the right part corresponds to the the curl of the elastic and
plastic spin tensors, respectively.
The mechanical framework proposed considers line defects (i.e. dislocations and discli-

nations) both as discrete and as continuous objects. As such the mechanical fields (i.e.
Cauchy stress, couple-stress, total strains, total curvatures) are obtained by first quantify-
ing the plastic strain and plastic curvatures associated with the motion of dislocations and
disclinations, respectively. In the following, when needed, the symbols � and ⊥ will be
used to differentiate between disclination and dislocation related quantities, respectively.
In the case of dislocations lying on specific slips systems, one writes the total plastic
distortion field within the medium as follows:
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Up⊥
ij =

∑

s
bsin

s⊥
j γ s. (8)

The symmetric part of the plastic distortion is the plastic strain

ε
p⊥
ij = 1

2
∑

s

(
bsin

s⊥
j + bsjn

s⊥
i

)
γ s, (9)

while the skew-symmetric part is the plastic spin

ω
p⊥
ij = 1

2
∑

s

(
bsin

s⊥
j − bsjn

s⊥
i

)
γ s. (10)

In the above relations, bs and ns⊥ denote the unit Burgers vector and slip normal direc-
tion of slip system s. The local plastic shear γ s is obtained by multiplying the Burgers
vector of the dislocation considered by the area is has sheared, normalized by the simula-
tion volume. Importantly, Eq. (10) describes the crystal lattice rotation due to dislocation
glide. Lattice rotations are therefore accounted for as they will impact the local elastic
fields as a consequence of the elastic anisotropy of the crystal. Further, the evolution of
lattice curvatures (the gradient of lattice rotations) due to dislocation glide will also affect
the dynamics of disclinations.
We decompose the plastic curvature into disclination and dislocation parts:

κp = κp� + κp⊥. (11)

The plastic curvature tensor due to dislocations is fully compatible as it is the gradient
of the plastic rotation. It can be written as:

κ
p⊥
kl = eijkU

p⊥
ji,l . (12)

On the contrary, the plastic curvature due to disclinations κp� must contain both an
incompatible part κp�i and a compatible part κp�c. The compatible part will be defined
later on.
The net plastic rotation jump due to the presence of a disclination is denoted with the

Frank vector �. Assuming known the planes on which disclinations can move, similarly
to the case of dislocations, one can thus write the local incompatible plastic curvature
field as follows:

κ
p�i
ij =

∑

s
�s

in
s�
j κs, (13)

where �s and ns� denote the unit Frank vector and ’slip’ normal direction of system s.
Obviously the ’slip’ planes for disclinations are not necessarily the same as those of
dislocations. The plastic curvature κs is obtained by multiplying the Frank vector of the
disclination by the area it has swept, normalized by the simulation volume. In doing so,
we impose that disclination lines and loops move in crystallographic planes, which is
physically realistic and original as compared to the Field Disclination and Dislocation
Mechanics continuous framework (Fressengeas et al. 2011). As shown in the next section,
it is important to note that the plastic curvature induced by disclinations also generates
plastic strains, which in turn affect the Cauchy stress field. Given plastic strain and cur-
vature fields due to a distribution of dislocation and disclination lines, we now search
for the associated internal stress and couple-stress fields. In the absence of significant
body forces, both momentum and moment of momentum are conserved (Cosserat and
Cosserat 1909):
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divT = 0 (14)

divM − T : X = 0, (15)

where the stress tensor T is generally non-symmetric. Thus, the rotated stress vector
T : X balances the divergence of the couple-stress tensor M when T is non-symmetric.
Given a description of the specific free energy density function containing contributions
from elastic strains and curvatures, one can introduce the constitutive relationship for the
symmetric Cauchy stress Tsym and deviatoric couple-stressMdev (Upadhyay et al. 2013):

Tsym = C : εe + D : κe (16)

Mdev = A : κe + B : εe. (17)

Plastic strains and curvatures due to defects appear in the above balance equations,
through the additive decomposition εe = (ε − εp) and κe = (κ − κp). Further note that
tensors A, B and D involve internal characteristic lengths that are the order of a fraction
of the Burgers vector magnitude (Taupin et al. 2014; Po et al. 2014; Seif et al. 2015).
Focus is now placed on the motion of discrete dislocation and disclination lines under

the action of internal stress and couple-stress fields. At any point on the dislocation, the
Peach-Koehler force is written as:

F⊥ = (
Tt .b

) × t⊥, (18)

where b is the Burgers vector and t⊥ denotes the line unit vector. Similarly, the Peach-
Koehler-type force acting on a point lying on a disclination is expressed as follows:

F� = (
Mt .�

) × t�, (19)

where � is the Frank vector and t� denotes the line unit vector. It is a discrete version of
the driving force defined in earlier work (Fressengeas et al. 2011). Naturally, in the context
of discrete defect dynamics, forces (18) and (19) should be integrated along a discretized
segment in order to extract the forces acting on a node. From the known Peach-Koehler
forces, the local velocity of points lying on the dislocation or disclination lines can be
computed. In the present case, one assumes an overdamped equation ofmotion expressed
as follows:

F⊥ = B⊥V⊥, (20)

F� = B�V�, (21)

where B⊥ and B� respectively denote the viscous drag coefficient matrix for dislocation
and disclination motion, while V⊥ and V� are the defect velocity vectors. Atomistic sim-
ulations can be used to estimate the drag coefficients for dislocation glide, depending on
temperature, strain rate, segment character etc. (Bitzek and Gumbsch 2004; Cho et al.
2017). However, they are not known for disclinations. We will assume in our simulations
that dislocation mobility is significantly higher than disclination mobility, meaning that
disclination-mediated interface motion and plastic relaxation mechanisms is then much
slower than dislocation glide in grains. Further for the sake of simplicity, the mobility of
dislocations and of disclination are taken as independent of the segment character. Here
as well, velocities (20) and (21) are then rewritten by introducing the interpolation func-
tions used to discretize each segment. The resulting equations are then integrated over
each segment in contact with a specific node such as to extract an equation of motion at
each node as is typically done in discrete dislocation dynamics.
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Finally, from the viewpoint of kinematics alone, one can introduce a generalized
Burgers vector conservation law. It simply states that the flow of Burgers vector is a
conserved quantity. This type of expression is typically used to solve the kinematics of
junction formation and unzipping processes, i.e.

∑
bi = 0. However, in the present case

the equation of continuity is expressed dynamically and in the presence of disclinations,
such that non-curl-free plastic curvature rates can lead to the generation of new dislo-
cation lines. This was originally proposed by deWit (1970) and recently derived in the
Field Dislocation and Disclination Mechanics model (Fressengeas et al. 2011). In order to
express this dislocation source/sink term, we first define the Nye dislocation density ten-
sor component αij = 1

�Snbit
⊥
j in the cartesian frame. The number n of dislocation lines

of Burgers vector component bi gives a total length of Burgers vector per unit resolution
surface �S. With this areal tensor, the evolution of dislocation densities writes:

α̇ = −curl U̇p, (22)

Further, recalling the decomposition of the plastic distortion into strains and spins, one
has:

α̇ = −curl ε̇p + κ̇pt − tr(κ̇p)I. (23)

The plastic curvature rates include contributions from dislocation glide (the gradient of
the plastic rotation) and from disclination motion, such that κ̇p = κ̇p⊥ + κ̇p�. The last
contribution is the source/sink term for dislocations (Fressengeas et al. 2011). Coming
back to the discrete version, this source/sink term can be written in component form as:

ṅbitj = �S
(
κ̇
p�
ji − tr

(
κ̇p�)

δij
)
. (24)

In the above discrete form, ṅ is the number of generated dislocations. The vectors bi and
tj are expressed in the reference coordinate system. As such, they have to be projected on
possible crystallographic dislocation systems to nucleate discrete dislocations. A priori,
there is no unique solution (nucleation of dislocation partials for instance) and we shall
select the solution, based on energetic arguments such as dissipation, or on experimen-
tal observations and atomistic simulations. A first application of this source/sink term is
shown later on in this paper.

Numerical implementation, illustrations
Numerical implementation

In this section, we present the important numerical aspects related to the mesoscale
model. The field equations will be solved by using Fast Fourier Transform (FFT) algo-
rithms. First, we present the regularization method used to distribute the plastic fields
induced by discrete dislocation and disclination lines (Bertin et al. 2015) within the FFT
grid. Second, we show how to uniquely calculate the plastic strains arising from plastic
curvatures induced by disclinations (Fressengeas et al. 2011). Third, we provide details on
the spectral FFT code used to solve the balance equations.
We start with the calculation of plastic eigendistortionsUp⊥ and plastic eigencurvatures

κp� due to discrete dislocation and disclination lines, respectively. The reader is referred
to the work by Bertin et al for more details (Bertin et al. 2015). The numerical method
is presented in the case of dislocation lines, then the exact same procedure applies for
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disclination lines. Nabarro showed that dislocations can be described as a set of coher-
ent misfitting platelet inclusions (see for instance Mura (1987); Wang et al. (2001)). This
representation of dislocations was recently used to develop the so-called Discrete Contin-
uousModel (DCM) (Lemarchand et al. 2001; Vattré et al. 2014a). In this eigenstrain-based
numerical formulation, the elastic fields of dislocations is obtained by introducing dis-
locations as plate-like inclusions (see Fig. 1), bearing the appropriate plastic strain, in a
finite element solver.With this approach, a dislocation line – defined by its Burgers vector
b and its defect surface S with unit normal n – produces a plastic distortion:

Up
ij(x) = − (

binj
)
δ(S − x) (25)

where δ(S − x) denotes the three-dimensional Dirac delta function that is zero every-
where except on surface S, and which accounts for the displacement discontinuity [u] = b
across S. The plastic distortion Up(x), directly resulting from the motion of dislocation
lines, is numerically updated using the same regularization procedure. The increment of
plastic distortion generated at voxel xd from the motion of dislocation segments on all
slip systems is expressed as:

dUp(xd) =
∑

s

(
b s ⊗ n s) dγ s(xd) (26)

where the summation is performed over all slip systems s with Burgers vector b s and unit
normal n s, and where dγ s(xd) denotes the plastic shear increment resulting from crys-
tallographic slip on system s. Considering the motion of all dislocation segments across
voxel xd, increment dγ s(xd) is expressed as:

Fig. 1 Dislocation eigenstrain formalism. a Schematic of a dislocation loop L defined as the boundary of a cut
introduced over a surface S within a continuous material. A dislocation with Burgers vector b is introduced
when the crystal in domain S+ above surface S is slipped by an amount b = ‖b‖ in the direction of b/‖b‖
with respect to the crystal in domain S− below surface S, thereby generating a displacement jump [u] = b
across surface S. b In the eigenstrain theory, dislocations are considered as plate-like Eshelbian inclusions of
thickness t. Surface S corresponding to the slip plane of the dislocation is defined by the plane formed by the
Burgers vector b and the line direction t such that n = b×t

‖b×t‖ . For a dislocation, t corresponds to the
inter-atomic distance associated with its slip plane
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dγ s(xd) =
∑

ij
dγ

xd
ij (27)

where dγ
xd
ij denotes the shear produced by the glide of dislocation segment ij at voxel

xd, and where the summation is performed over all segments ij gliding across voxel xd.
As depicted in Fig. 1, dislocations are represented as a plate-like inclusion of thickness
h = 2L, with L denoting the distance between voxels.With this, the shear produced by the
motion of a dislocation can be determined as follows. It is considered that an elementary
sheared area dS(x) centered in x swept by the glide of a portion of a dislocation segment ij
produces an elementary homogeneous plastic shear dγ (x)within an elementary spherical
volume dφ(x) of radius h/2 (Vattré et al. 2014a), such that:

dγ (x) = b dS(x)
dφ(x)

= c(d)
6b
πh3

dS(x) (28)

where b denotes themagnitude of the Burgers vector of the dislocation line. c(d) denotes a
correction factor, as defined in Bertin et al. (2015), which ensures that the predicted stress
fields remain correct regardless of the distance d between the segment and the center of
the voxel. Following Eq. 28, the plastic shear dγ

xd
ij in expression (27) produced by the

glide of a dislocation segment ij is regularized at each grid point xd as:

dγ
xd
ij = 6b

πh3
dS xd

ij = c(d)
b
Ve

dS xd
ij (29)

where Ve = πh3/6 is the volume of the elementary spherical sheared volume dφ(xd) of
radius h/2, and where quantity dS xd

ij corresponds to the intersection between the area
dAij swept by dislocation segment ij and the elementary sphere of volume Ve centered
at voxel xd. Further details on this regularization procedure (e.g. choice for the regular-
ization parameter h, numerical procedure to compute dS xd

ij , numerical implementation,
etc.) can be found in a recent paper (Bertin et al. 2015). The same procedure applies for
disclinations, the Frank vector substituting for the Burgers vector and using disclination
slip systems.
From the known incompatible plastic curvature due to disclinations κp�i, one must

quantify the associated incompatible plastic strain εp� and compatible plastic curvature
κp�c fields. The reader is referred to the original paper introducing Field Disclination and
Dislocation Mechanics for more details (Fressengeas et al. 2011). Once εp� is known, the
total plastic strain εp = εp� + εp⊥ is obtained and the balance equations can be finally
solved. The plastic strain εp� satisfies:

curl εp� = (
κp�i)t + (

κp�c)t − tr
(
κp�i) I − tr

(
κp�c) I, (30)

The compatible curvature κp�c is the gradient of a continuous plastic rotation field. The
latter rotation and the plastic strain εp� compose the plastic distortionUp�, such that the
above incompatibility equation can be written as:

curl Up� = (
κp�i)t − tr

(
κp�i) I. (31)

Note that Up� cannot contain any gradient part to ensure uniqueness of the solution
(Acharya 2001). As such, it must be divergence-free. Hence, by taking the curl of above
equation, Up� is solution of the higher-order equation:

div gradUp� = �Up� = −curl
((

κp�i)t − tr
(
κp�i) I

)
. (32)
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Note in the above equation that the symbol � in front of the plastic distortion indi-
cates the Laplace operator applied to the plastic distortion. No boundary condition
on Up� applies here because of periodic boundary conditions in our FFT framework.
Equation (32) is solved in the Fourier space by using FFT algorithms and special rules
for evaluating spatial derivatives. The numerical method used is presented in a recent
paper (Berbenni et al. 2014). Finally, the plastic strain εp� can be derived as the sym-
metric part of Up�. The compatible plastic curvature κp�c can be calculated from the
skew-symmetric part of the distortion.
Once the above plastic strains and curvatures are known, we can solve for the stress

and couple-stress balance Eqs. (14, 15). Recall that the elastic moduli tensors A, B and D
involve internal characteristic lengths that are the order of a fraction of the Burgers vec-
tor magnitude. Hence, at a resolution scale sufficiently larger than interatomic distances,
which is the case in the proposed mesoscale model, the couple-stresses do not affect
the balance of the stress field and the skew-symmetric stress is negligible as compared
to the symmetric Cauchy stress. Hence, solving the above balance equations or simply
div(C : εe) = 0 yields exactly the same stress and couple-stress fields. Obviously, it is not
true anymore when using a very small resolution scale to model the core elastic fields of
defects (Taupin et al. 2017). In the model, the elastic stiffness tensor C is heterogeneous
because of crystal orientation and elastic anisotropy. We use the accelerated FFT spec-
tral scheme formerly introduced by Eyre and Milton (Eyre and Milton 1999; Michel et al.
2001) and recently used in the DCM-FFT-DDD code (Bertin et al. 2015). The converged
solution of the balance equations provides the total strain tensor ε.
The last step consists of deriving the total curvature tensor κ , such that the elastic, total

minus plastic, curvature is known and the stresses and couple-stresses can be evaluated as
per constitutive elastic laws (16, 17). The strategy proposed to derive the curvature tensor
in the Fourier space is as follows. The Cauchy stress field satisfies the balance equation:

div Tsym = 0, (33)

which reads in component form

Tsym
ij,j = 0. (34)

We now switch from the real space to the Fourier space. Let λ̂ denote the Fourier trans-
form of a function λ and ξ be the Fourier frequency vector with components ξi in a
reference cartesian frame. The imaginary number is denoted by i. The balance Eq. (34)
becomes

iξjT̂
sym
ij = 0. (35)

The heterogeneous elastic moduli tensor isC = C0+δC, whereC0 is the stiffness tensor
of a homogeneous reference medium and δC is the spatial fluctuation of C. Expressing
the Cauchy stress as Tsym

ij = Cijkl
(
uk,l − ε

p
kl
)
allows rewritting Eq. (35) in the well-known

form

ξlξjC0
ijklûk = iξjτ̂ij, (36)

where τ̂ij is the stress polarization tensor that includes both the fluctuation δC and the
plastic strain. The above equations set an algebraic linear system of the form

Ĝikûk = f̂i, (37)
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where Ĝ is associated with the homogeneous reference tensor C0, and ûk is the material
displacement. The latter is given by

ûk = Ĝ−1
ki f̂i. (38)

From the expression of the displacements, we now derive the curvature components.
We first express the rotation vector as half of the curl of the displacement vector:

ω̂i = i
1
2
eilkξlûk = i

1
2
eilkξlĜ−1

kmf̂m. (39)

The curvatures thus read:

κ̂ij = −1
2
eilkξjξlûk = −1

2
eilkξjξlĜ−1

kmf̂m. (40)

We finally cast the stress polarization tensor in f̂. Eq. (40) is transformed into :

κ̂ij = −1
2
eilkξjξlĜ−1

kmiξnτ̂mn. (41)

By defining the following fourth-order tensor:

�̂κ
ijmn = − i

2
eilkξjξlξnĜ−1

km, (42)

The total curvature finally reads:

κ̂ij = �̂κ
ijmnτ̂mn. (43)

An inverse FFT can finally be used to obtain the curvature tensor in the real space.
Finally, one obtains the elastic curvature tensor by subtracting the plastic part. Note that
the material rotation vector is also known from Eq. (39), which allows calculating the
elastic rotation by subtracting the plastic rotation.

Illustrations

We now present two illustrations of the proposed model. A simple cubic crystal struc-
ture with lattice parameter a = 0.32nm is assumed. Isotropic elasticity is used, with shear
modulus μ = 17GPa and Poisson coefficient ν = 0.3. Further, we consider a periodically
reproduced cubic simulation box with dimension (1800a)3. The critical distance for dis-
crete defect interactions (annihilation, junctions etc.) is set to be 10a = 3.2nm and the
defect remeshing distance to 20a = 6.4nm. The FFT grid is made of 1283 voxels, imply-
ing a spatial resolution for the elastoplastic fields of ∼ 14a ∼ 4.5nm. Regarding defect
velocities, the drag coefficient matrix is taken as diagonal and isotropic such that only one
drag coefficient is necessary to describe dislocation glide. Here we take B⊥ = 10−2Pa.s.
The drag coefficient matrix for disclinations is also taken as diagonal and isotropic result-
ing in the need for only one drag coefficient. Its value is 100 times that of dislocations. In
these illustrations, we restrict ourselves to the sole consideration of disclination dynam-
ics. The glide planes of disclinations are limited to cube faces of the crystal cell; e.g. {001}.
The Frank vector of disclinations is aligned with the cube directions and its magnitude is
denoted by�. In the first simulation, we propose tomodel an isolated circular disclination
loop. Figure 2 shows the self-relaxation of a circular disclination loop of radius r=100nm,
under the action of its own couple-stress field. The Frank vector is along [100] direction
with magnitude arbitrarily chosen as � = 1rad. The initial loop is shown on the top right
and top left of the figure. The loop can glide in the (001) plane. The evolution of the shear
stress T23 (respectively the couple-stress M12) during the self-relaxation of the disclina-
tion loop is also shown on the left (respectively right) column in the figure. The simulation
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Fig. 2 Self-annihilation of a disclination loop. The disclination loop (red line) is let to self-relax under its own
elastic field. (a,b,c) Relaxation of the internal shear stress field. (d,e,f) Relaxation of the internal couple-stress
field

predicts the self-annihilation of the disclination loop under the action of its own couple-
stress field. In short, it is shown here that the planar motion of disclinations is similar
to those of dislocations. Although not shown here, applying a couple-stress M13 leads
to the expansion of the disclination loop. Focus is then placed on the case of short and
long range elastic interactions between twin disclinations. Consider a two-dimensional
scenario in which a matrix contains a stack of domains as depicted in Fig. 3. Further
assume that the crystal disorientation axis across each domain is parallel to X1. Each
domain is bounded by a wedge disclination quadrupole, the wedge disclination lines being
infinitely straight. The Frank vector is along [100] direction with magnitude arbitrarily
chosen as � = 0.1rad and the elastic fields are invariant w.r.t. the X1 axis. This configu-
ration is very similar to that obtained in 2D simulations of twins in shape memory alloys
(Reinholz et al. 2016), except that it is more symmetric here. The initial in plane internal
shear stress field is shown in the Fig. 3 and resembles to that predicted in simulations of
shape memory alloys. To model twin thickening/thinning, the disclination slip planes are
now taken as (010). The system is then set to relax in its own elastic field. Figure 3 shows
the migration of twin boundaries in the normal [001] direction, i.e. thickening or thinning
of domains, until one recovers a defect free matrix. We note that the long and short range
(i.e. annihilation) interactions between the twin domains are fully accounted for.
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Fig. 3 Self-relaxation of twin stacks. Initial twin stacks are let to self-relax by thickening/thinning of twins in
the normal direction. a: sketch of the simulated twin stacks using wedge disclination lines. b: Colour-coded is
shown the initial in plane shear stress field (MPa) due to disclination lines (red lines). c View in the (X1, X3)
plane showing the progressive growth and shrinkage of twins during self-relaxation until a defect-free matrix
is obtained

Applications
Focus is now placed on the application of the disclination and dislocation dynamics
framework to study the kinematics and thermodynamics of twin propagation in Mg, as
well as twin thickening mediated by the motion of ledges and emission / propagation of
twinning dislocations at twin interfaces. We consider

(
101̄2

)
twins (Partridge 1967). The

twin plane normal is
[
101̄2

]
and coincides with the X3 axis, the shear direction is

[
101̄1

]

and coincides with the X2 axis. The normal to shear direction in the twin plane is
[
12̄10

]

and coincides with the X1 axis. The value of twinning shear is s = 0.131. Twinning dis-
locations gliding in the twin plane have a Burgers vector in the shear direction

[
101̄1

]

and the magnitude is b = 0.0446nm. The elementary step associated with disconnec-
tions and separating adjacent twin planes is h = 0.378nm. In the reference coordinate
system chosen, the shear transformation s leads to a distortion Up

23 = s. The plastic dis-
tortion can therefore be decomposed into plastic strains, ε

p
23 = ε

p
32 = s/2, and spins

ω
p
23 = −ω

p
32 = s/2. In consequence the rotation vector is�

p
1 = −s/2. Therefore, the mag-

nitude of the Frank vector of the elementary disclinations used to build the twins and twin
interface ledges is 0.0655rad=3.7°. Themagnesium lattice parameters are a = 0.32nm and
c = 0.52nm. Isotropic elasticity is reasonably assumed (Capolungo et al. 2010), with shear
modulus μ = 17GPa and Poisson coefficient ν = 0.3.
We postulate that disclinations could be natural defects at the intersections of material

interfaces (i.e. junction of interfaces). This is the case triple lines, twin tips or ledges on
the twin interface. This has also been suggested in other body of works (Bollmann 1970;
Xu et al. 2013; Barrett and El Kadiri 2014). With regards to disclinations’ habit planes,
as suggested by atomistic simulations -albeit providing at best circumstantial evidence-
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we further postulate that disclinations can naturally glide on minimum energy inter-
face planes. In the case of tensile twinning in magnesium, disclinations would therefore
glide on the

(
101̄2

)
twin plane. In addition, wedge disclinations which would bound the

tip of a twin domain could also glide/climb on the basal/prismatic interface. The lat-
ter was shown to be a minimum energy interface. In what concerns the ’dark side’ of
the twin (Liu et al. 2016), i.e. observing the twin domain along the twin shear direction,
twist disclinations would then potentially ’cross-slip’ on pyramidal/pyramidal boundaries
(i.e.

{
2̄110

}
//

{
21̄1̄0

}
or potentially

{
1̄010

}
//

{
101̄1̄

}
).

transverse propagation of the
(
101̄2

)
twin

As stated in the above, disclination and their motion allow for an explicit description
of lattice rotations. As such they appear as ideal defects/constructs to track the kinetics
of propagation of twin domains. This is studied in the case of an isolated

(
101̄2

)
twin

domain which stability and transverse propagation is modeled as shown in Figs. 4–6. A
twin embryo is created simply by placing two disclination loops of opposite Frank vec-
tor �1 = �e

1 = −�
p
1 = ±s/2 above one another on parallel twin planes. The positive

(resp. negative) loop is placed on the bottom (resp. top) of the dipole, such as to delimit
a twin domain with negative plastic rotation −s/2 with respect to the matrix. Figure 4
shows the elastic fields within the initial twin domain. In the top of the figure are shown
the in plane shear stress field T23 and the elastic dilatation/contraction in the plane par-
allel to the twinning shear direction

[
101̄1

]
. Disclination lines tangent to that plane are of

pure wedge character. The location of elastic dilatations (resp. contractions) allows iden-
tifying negative (resp. positive) wedge disclinations. The bottom of Fig. 4 shows the out of
plane shear stress fields in the plane normal to the shear direction. The disclination lines

Fig. 4 Initial elastic fields in a (101̄2) twin domain. The twin is built with a dipole of disclination loops (red
lines). (a,b) Stress field T23 and elastic dilatation/contraction in a slice parallel to the shear direction, the frame
is shown on the left. (c,d) Stress fields T23 and T12 in a slice normal to the shear direction, the frame is shown
on the left
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Fig. 5 Self-shrinkage in the transverse direction of a (101̄2) twin. The twin is modelled by a dipole of
disclination loops (red solid lines). From (a) to (d): Progressive self-shrinkage of the twin. In blue colour is
shown the plastic rotation around X1. Only plastic rotation values smaller than -0.06 rad are shown

Fig. 6 Growth in the transverse direction of a (101̄2) twin. The twin is modelled by a dipole of disclination
loops (red solid lines) and gowth as per application of a shear strain ε23 of 0.01. From (a) to (d): progressive
growth of the twin. The arrows show the applied shear in figure (a). In blue colour is shown the plastic
rotation around X1. Only plastic rotation values smaller than -0.06 rad are shown
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tangent to that plane are of pure twist character. One can see that the plastic eigenstrains
and eigencurvatures resulting from the generation of the twin domain is compensated
in the matrix phase such as to lead to the generation of large ’back stresses’ acting on
the disclinations. Importantly, one can note an asymmetry of the shear stress field T23 in
planes parallel (Fig. 4a) and normal (Fig. 4c) to the twinning shear direction. Strong pos-
itive stresses can be seen in front of the twin in the plane parallel to the shear direction,
while they are much less significant in the other plane. Hence, from a purely elastostatic
standpoint and considering only stresses, the latter suggest that twin propagation should
be favored in the shear direction

[
101̄1

]
as compared to the normal direction

[
12̄10

]
.

However, from a dynamic point of view, disclination motion is driven by couple-stresses
and the kinetics of propagation of the twin domain in shear and lateral directions depend
on the mobility of disclinations. As such, introducing a segment-character dependent
disclination drag will allow controlling the kinetics, together with internal elastic fields of
the twin. This will be the object of further studies. Figure 5 shows the initial twin domain
as well as the plastic rotation field (the matrix phase is taken as reference for comput-
ing orientations). It then shows the evolution of the disclination loops and the associated
rotation field during self-relaxation under the internal couple-stress field of the twin. The
twin domain is consistently observed to shrink, together with the rotation field, such
that one ends up with a single phase matrix. However and as expected, upon imposing a
macroscopic shear strain to the system, ε23 = 0.01, it is found that the twin domain can
now expand. This is shown in Fig. 6. This applied shear strain yields a couple-stress as per
non local elasticity tensor B (Taupin et al. 2014, 2017), which is in turn responsible for
disclination loops expansion. Very importantly, not only the prediction of twin growth in
the transverse direction can be predicted by our 3D model, but so does the evolution of
the rotation field, as shown in Fig. 6. We note that the shape of the twin domain remains
almost perfectly circular during shrinking and growth.

Twin thickening

Thickening of a twin domain can be mediated by several processes which all lead to the
generation of ID. Focus is placed on the generation of twinning dislocations from ledges
present on a twin interface. For this first study, the intent is not to extract the kinetics
and overall contributions of these mechanism but solely to assess the thermodynamics
and kinematics of the mechanism. As shown in Fig. 7, we consider a twin plane con-
taining a ’crater’ in which the matrix phase locally penetrates into the twin domain. The
boundaries of the crater can therefore be modeled as a disclination loop dipole with
Frank vector corresponding to half of the twinning shear as in the previous case. For
the sake of simplicity a square loop configuration is taken and the initial loop sizes are
200a and 100a. The crater height is 50a. The four interfaces connecting the two square
disclination loops can be interpreted as Basal / Prismatic (BP) and Pyramidal/ Pyramidal
(PP≈ PP1 or PP2) interfaces. As in the previous case, disclination loops can glide in the
(
101̄2

)
twin plane. However, out of plane motion of disclination loops is also allowed

in the BP and PP interfaces. The choice of the plane of motion is simply based on the
driving forces magnitude acting on disclination lines. If disclinations experience out of
plane motion, following Eq. (24), twinning dislocation loops with Burgers vector b in
the twinning shear direction will be generated in adjacent twin planes once disclination
loops have moved by an elementary step distance h perpendicular to the twin plane.
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Fig. 7 Simulation of a twin interface crater by using a dipole of disclination loops. a 2D Sketch of the initial
crater configuration (blue lines). Blue triangles denote wedge disclinations. b 2D sketch of the dynamics of
the crater. Dotted horizontal lines denote adjacent planes parallel to the twin plane and separated by
elementary steps h. Orange triangles show the new position of disclinations, leading to the nucleation of
steps and edge dislocations, i.e. disconnections. c Initial dipole of square disclination loops forming the crater
(blue lines). (d,e,f) Generation of dislocation loops (red lines) from the out of plane motion of disclination
loops of opposite sign (orange lines). The lower dislocation loop shrinks while the upper one expands and
reaches an equilibrium position

Upon self-relaxation, the couple-stress field induces an out of twin plane motion of the
disclination loops crossing onto the BP and PP1 planes. The loops attract each other, such
that the upper loop moves down while the lower loop moves up. Once both loops have
moved by a distance h perpendicular to the twin plane, a dipolar arrangement of square
twinning dislocation loops (red lines in the figure) is thus generated. As the mobility of
dislocations is higher than that of disclinations, the upper and lower dislocation loops
rapidly expand and shrink, respectively. Interestingly, the upper loop reaches an equilib-
rium elliptical shape, as shown in Fig. 7d, due to a balance between the repulsing stress
field of the crater and the line tension of the elliptical dislocation loop. The loop is more
elongated in the screw direction. As sketched in the Fig. 7, we shall interpret the observed
mechanism as the nucleation of disconnection loops from ledges in the twin interface.
The generated disconnection loops are indeed composed of a step and of a dislocation,
and they help propagating the twin interface. Such a mechanism is very similar to obser-
vations in twin boundary interfaces in Mg as obtained from MD simulations, and can be
invoked in other interfaces (Mompiou et al. 2009; Khater et al. 2012; Rajabzadeh et al.
2013; Hirth et al. 2016).

Conclusions
We have proposed a novel Generalized Discrete Defect Dynamics

(
GD3) mesoscale

model. In addition to discrete dislocation lines, discrete disclination lines are introduced
to account for the incompatibilty of elastic curvatures and discontinuity of elastic rota-
tions in material interface defects, such as triple lines, twin tips, and interface ledges.
Apart from the numerical implementation, our work proposes that disclinations could
be intrinsic defects that are to be unambiguously found at junction between material
interfaces. Further, our work postulates that disclination motion is constrained to be
located on minimum energy interface planes (in the case of twinning the Coherent Twin
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boundary, Basal Prismatic boundary etc.) Third, we evidence the possibility for disclina-
tions to change glide plane and emit dislocation in a fully conservative fashion. Applying
the model to

(
101̄2

)
twinning in magnesium, It is shown that twin domains can be appro-

priately described by using dipoles of disclination loops. Further, both shrinking and
propagation of twins can then be simulated. Importantly, the introduction of disclination
loops as plastic eigencurvatures allows to conveniently track the evolution of rotations
during twin propagation. The disclination based constructs of twins thus appears to be
practical as internal stress fields, rotations and propagation can be rendered simultane-
ously. Further, the model was used to study the stability of 3-dimensional defects, craters,
along the twin interface. Simulations suggest that large ledges along the twin boundaries
could decay by generating twinning dislocations; a phenomenon observed in atomistic
simulations that insofar had not been mechanistically described or understood. The pre-
diction of this mechanism is the sole consequence of the higher order kinematics and
thermodynamic framework of the model. Naturally, the proposed framework pauses sev-
eral interrogations pertaining to the mobility of disclinations, their rate of decay and the
short range interactions with dislocations. These will be pursued in further studies.

Appendix: mathematical notations
A bold symbol denotes a tensor. When there may be ambiguity, an arrow is superposed
to represent a vector: V. The symmetric part of tensor A is denoted Asym. Its skew-
symmetric and deviatoric parts are Askew and Adev respectively. The transpose of a tensor
A is denoted At . The tensor A · B, with rectangular Cartesian components AikBkj, results
from the dot product of tensors A and B, and A⊗ B is their tensorial product, with com-
ponents AijBkl. The vector A · V, with rectangular Cartesian components AijVj, results
from the dot product of tensor A and vector V. A : represents the trace inner product of
the two second order tensors A : B = AijBij, in rectangular Cartesian components, or the
product of a higher order tensor with a second order tensor, e.g., A : B = AijklBkl. The
cross product of a second-order tensor A and a vector V, the div and curl operations for
second-order tensors are defined row by row, in analogy with the vectorial case. For any
base vector ei of the reference frame:

(A × V)t · ei = (
At · ei

) × V (44)

(div A)t · ei = div
(
At · ei

)
(45)

(curl A)t · ei = curl
(
At · ei

)
. (46)

In rectangular Cartesian components:

(A × V)ij = ejklAikVl (47)

(divA)i = Aij,j (48)

(curlA)ij = ejklAil,k . (49)

where ejkl is a component of the third-order alternating Levi-Civita tensor X. A vector A
is associated with tensor A by using its trace inner product with tensor X:

(A)k = −1
2
(A : X)k = −1

2
eijkAij. (50)
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In the component representation, the spatial derivative with respect to a Cartesian
coordinate is indicated by a comma followed by the component index. A superposed dot
represents a material time derivative.
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