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Abstract
We explore new ways of regulating defect behavior in systems of conservation laws.
Contrary to usual regularization schemes (such as a vanishing viscosity limit), which
attempt to control defects by making them smoother, our schemes result in defects
which aremore singular, and we thus refer to such schemes as “irregularizations”. In
particular, we seek to produce delta shock defects which satisfy a condition of
stationarity. We are motivated to pursue such exotic defects by a physical example
arising from dislocation dynamics in materials physics, which we describe.
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Introduction
A remarkable feature of systems of conservation laws is the tendency of smooth initial
data to give way to non-smooth defects after only finite time. Examples include shocks
in hydrodynamics, cracks and dislocations in crystalline solids, and traffic jams in con-
tinuum models of traffic flow. Such defects are important in determining the qualitative
behavior of a system, but they pose various theoretical and practical challenges, stem-
ming from the fact that the time evolution of defects cannot be determined solely from
the evolution of the ambient continuum.
The physical origin of this difficulty can be understood as follows: Continuum equations

of motion are derived frommore fundamental, microscopic laws by discarding the “high-
order” terms which are irrelevant at macroscopic scales. Thus, systems with different
microphysics can yield the same continuum equations, and conversely the continuum
equations alone do not specify the microphysics. Defects are inherently microscopic, and
thus their behavior cannot be inferred from the continuum laws.
The ambiguity of defect behavior in systems of conservation laws is reflected in

the mathematical theory by non-uniqueness of solutions containing defects. To obtain
uniqueness, one must impose additional conditions upon the solution, presumably corre-
sponding to the microphysics not accounted for by the continuum equations. Common
conditions of this sort include entropy conditions and any of various types of regularization.
In the former case, inequalities are imposed in analogy with the thermodynamical prin-
ciple that entropy must always increase, while in the latter case the conservation laws
themselves are modified by the addition of small terms that serve to smooth out defects.
We will return in more detail to both of these cases in the next section.
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For the most common kinds of conservation laws (notably, those of hydrodynamics),
the “proper” choice for solutions with defects turns out to be relatively tame, with defects
consisting only of jump discontinuities and being described by regularization with a van-
ishingly small viscosity term. Somemore exotic systems feature different classes of defects
which require other types of regularization Fig. 1; for example, superfluids are known
(Meppelink et al. 2009) to exhibit dispersive shock waves which are described by a very
small dispersive term. Still another type of defect (which is a primary subject of this paper)
is a delta shock, which consists of a delta function-like spike, possibly riding atop a reg-
ular (viscous) shock . This latter type of defect is much more poorly understood than
the former two and differs in some important regards: Firstly, there is no particular reg-
ularization associated with delta shocks (for some systems, delta shocks may even be
contained in the vanishing viscosity solutions (Tan et al. 1994)). Secondly, there are few
physically-realizable systems which are currently known to exhibit delta shocks.
The present paper was motivated by the discovery of delta shocks in a system arising

from materials physics—continuum dislocation dynamics (CDD)—which to our knowl-
edge provides the best physical interpretation of delta shocks currently available. These
delta shocks have presented substantial challenges to physicists interested in simulating
CDD numerically, which has led to a desire for new numerical methods tailored to better
handle such exotic defects. We explore in this paper (in a mostly informal way) perspec-
tives on delta shocks which may be of use to practitioners interested in simulating them
numerically. (We do not, however, explicitly construct any numerical schemes here.) In
particular, we describe a condition of stationarity which forces the formation of delta
shocks, and we construct a new kind of “irregularization” which also produces delta-like
defects (though we do not rigorously prove these to be true delta shocks).
The outline of this paper is as follows: In the first section we provide some background

on classical shocks. In the second section we describe delta shocks and discuss various

Fig. 1 Shocks in Burgers’ equation. (Color online) Various types of shocks resulting from different
regularizations of the Hopf equation: viscous shock (blue), dispersive shock (green), and delta shock (red)
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ways in which they can arise in systems of conservation laws, and we introduce the con-
dition of stationarity and the irregularization mentioned above. Then in the third section
we describe in more detail the system which initiated the preceding work—continuum
dislocation dynamics.

Background
In this section, we review basic facts about systems of conservation laws and standardize
our notation. A system of conservation laws (or simply “conservation law”) is a partial
differential equation (PDE) of the form

ut + ∇ · F(u) = 0, (1)

where u : � × R
+ → R

m (for � ⊂ R
n), u = u(x, t), is the unknown, and F : Rm → R

n

is a given flux function. The conserved quantity u we refer to as “mass” in the following
discussion. In the case where u is scalar valued (m = 1), we refer to Eq. (1) as a scalar
conservation law.
Our working example of a conservation lawwill be theHopf equation (a.k.a the “inviscid

Burgers’ equation”),

ut +
(
1
2
u2

)
x

= ut + uux = 0, (2)

which is a scalar conservation law in one spatial dimension (n = 1). The Hopf equation is
one of the simplest examples of a PDE which develops discontinuities in finite time (Evans
1998). Such discontinuities and other non-smooth features appearing in solutions to PDE
we refer to collectively as defects. In the presence of discontinuities in u, the derivatives
appearing in Eqs. (1-2) are no longer well defined, and so we must generalize our notion
of “solution” to a PDE in order to make sense of the conservation law at later times. Such
a generalization is referred to as a weak solution. Several distinct notions of weak solu-
tion exist, such as integral solutions, viscosity solutions, variational solutions, and various
types of regularized solutions, to name a few (Evans 1998).
Not all forms of weak solution are applicable to all PDE’s. The types of weak solution

which are most relevant for systems of conservation laws are regularized solutions and
integral solutions. In the former case, the PDE is modified by the addition of a small
term that serves to smooth out the defects; for the Hopf equation, such a modification
looks like

ut +
(
1
2
u2

)
x

= η ∂kx u, (3)

where η ∈ R controls the strength of the regularization. To recover a solution to the orig-
inal system of conservation laws, we take a limit as η → 0. Note that, in principle, the
form of the regularizing term should correspond to the microphysics of a given system—
so for example, systems with viscosity have a second-order regularization, η∂2x u, whereas
inviscid systems (like plasmas or superfluids) typically have dispersive (third-order) regu-
larization, η∂3x u. Below, in Eqs. (15–17), we will consider a different form of regularization
altogether, which nonetheless bears a familial resemblance to Eq. (3).
The main alternative kind of weak solution, the integral solution, proceeds instead by

integrating the original PDE to remove the problematic derivatives. Integral solutions are
not of direct interest to us here, but we point out one tangential relationship to our cur-
rent discussion: Integral solutions are generally not unique, and to select a proper weak
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solution requires additional microphysical information. This information is usually spec-
ified as a relationship between the values of the solution u on either side of a defect;
when the relationship takes the form of an inequality it is called an entropy condition
(Lax 1973; 1957), and when it is an equality it is called a kinetic relation (Le Floch 2002).
The stationarity condition we propose below is similar to a kinetic relation, but with the
generalization that the speed of the defect can also figure into the equality.

Delta shocks
For our purposes, a delta shock (also written “δ-shock”) may be defined informally as
any defect which has a finite amount of mass concentrated at a point. We note in pass-
ing that there are also meaningful notions of δ′-shocks (and δ(n)-shocks, more generally)
corresponding to defects containing derivatives of delta functions (Panov and Shelkovich
2006). Our numerical solutions (Section IIC, Figs. 2 and 3) appear to contain an upward
and downward-pointing singularity—the sum being the strength of the delta shock and
the difference a δ′ component. In this section we shall derive conditions for the evolution
of the strength of the delta shock component.
Delta shocks are known to arise naturally in a number of systems of conservation laws—

for example, the system

ut + (
u2

)
x = 0

vt + (uv)x = 0 (4)

considered by Tan, Zheng, & Zhang (Tan et al. 1994), and the system

ut + (
u2 − v

)
x = 0

vt +
(
1
3
u3 − u

)
x

= 0 (5)

Fig. 2 Irregularized Hopf equation. (Color online) Simulation of the irregularized Hopf Eq. (17) for two values
of ε , at time t = 1 (simulated with a conservative upwind differencing). Note that the singularity has both a
positive and negative peak. Only the sum contributes to the delta shock; the difference can be described as a
derivative of a δ-function
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Fig. 3 Cosh profile of delta spike. Comparison of a delta spike with a cosh profile of form (20). Note that the
cosh profile shown here is not a best fit, but rather an analytically derived approximation, as discussed in the
Appendix. The delta spike comes from a simulation with parameters ε = 2.5e − 6, dx = 2.5e − 4, and initial
data u(x, 0) = sin(2πx) + .1. Again, the positive and negative spikes must be added together to give the net
weight of the delta shock

studied by Keyfitz & Kranzer (Keyfitz and Kranzer 1989). In the former case, the delta
shocks have been shown to be vanishing viscosity limits of the regularized system

ut + (
u2

)
x = η uxx

vt + (uv)x = 0. (6)

The mechanisms which cause delta shocks to form in systems of conservation laws are
not fully understood (Keyfitz 1999), though in some cases the necessity of delta shocks is
obvious. We highlight two such cases here: Firstly, if a conserved quantity v is a derivative
of another variable u, and the latter exhibits regular (viscous) shocks, then clearly vmust
contain a delta shock. For example, if we take a derivative of the Hopf Eq. (2) and set
v := ux, we find that

vt + (uv)x = uxt + (uux)x = ∂x

(
ut +

(
1
2
u2

)
x

)
= 0, (7)

which is precisely the latter half of system (4). Thus (for suitable initial data) a slight
modification of Eq. 4,

ut +
(
1
2
u2

)
x

= 0

vt + (uv)x = 0, (8)

can be interpreted as the evolution of the conserved quantity of the Hopf equation, along
with that of its derivative ux =: v. This interpretation is not fully general, though. The
related system

ut + (F(u))x = 0

vt + (
g(u)v

)
x = 0, (9)
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where F is an arbitrary smooth & convex function and g is an arbitrary smooth & increas-
ing function, also displays delta shocks (Tan et al. 1994), though they cannot in this case
be viewed as derivatives of regular shocks. A more general interpretation for the appear-
ance of delta shocks in such conservation laws is as a consequence of incompatibility of
defect motion and the flow of the conserved quantity, which we explore in the next two
subsections.

Generalized Rankine-Hugoniot relation

The Rankine-Hugoniot relation is a statement of conservation of mass across a shock.
For the case of a regular shock in one spatial dimension which moves with speed σ , mass
conservation requires that the net flux into the shock balance the mass of the “hole” left
as the shock moves away. In symbols, this reads

F(ul) − F(ur) = σ (ul − ur) , (10)

where ul and ur are the values of u to the immediate left and right (resp.) of the shock (see
Evans (1998) for a more formal derivation of this relation).
If we allow the possibility of delta shocks storing mass on the defect, it is now the com-

bination of the hole behind the shock and the massm of the delta which must balance the
incoming flux. The modified Rankine-Hugoniot relation is thus

F(ul) − F(ur) = σ (ul − ur) + dm
dt

. (11)

Note that both Eqs. (10) and (11) are vector identities in general, andmay be interpreted
as specifying the shock speed σ and delta mass m (or the derivative thereof) in terms
of the local environment, given by ul and ur . In particular, this implies that Eq. (10) is
only satisfiable in general when u is scalar, since vector u leads to an over-specification
in (10) of the single unknown σ . Equation (11) has no such problem, since m has the
same number of components as u, so that there is always one more unknown than there
are equations in (11). This shows that, except in the presence of high degeneracy so that
Eq. (10) is soluble for σ , we expect multicomponent conservation laws to require delta
shocks in order to conserve mass in the vicinity of a defect.
This provides our preferred explanation of the delta shocks in system (4): the classical

Rankine-Hugoniot relation (10) for this system reads:

u2l − u2r = σ (ul − ur) =⇒ σ = ul + ur

ulvl − urvr = σ (vl − vr) =⇒ σ = ulvl − urvr
vl − vr

, (12)

which does not hold unless ulvr = urvl (i.e. the necessary degeneracy for (10) to be satis-
fiable does not generally exist). A similar statement shows why the more general system
(9) also displays delta shocks.

Stationarity

The Rankine-Hugoniot relations illustrate how multicomponent systems can develop
delta shocks when a defect’s motion cannot be simultaneously compatible with the flow
of all components of the conserved quantity. We can also produce a similar effect even in
scalar conservation laws by insisting that a defect move according to specified kinemat-
ics which are not compatible with the flow of the scalar conserved quantity. The simplest
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such example is to demand that a defect be stationary. This might be an appropriate kine-
matic constraint in, for example, an electrical network containing fuses, where a blown
fuse is modeled as a stationary defect. A stationarity condition could also be physically
appropriate for the continuum dislocation dynamics example we will describe below. This
stationarity condition is analogous to a kinetic relation (Le Floch 2002), with the general-
ization that the speed of the defect can now figure in as well (rather than just the value of
the local conserved quantity).
As an illustration, we consider the Riemann problem

u(x, t = 0) =
{
1 x ≤ 0
0 x > 0

(13)

for the Hopf Eq. (2). Mass flows into the defect at x = 0 with rate F(0−) − F(0+) =
1
2 ·12− 1

2 ·02 = 1
2 , and thus by the modified Rankine-Hugoniot relation (11) with σ = 0 we

find that the mass of the delta at x = 0 grows at a rate ṁ = 1
2 . Everywhere else the value

of u is uniquely specified by projection of characteristics. Hence a reasonable candidate
solution for all times t ≥ 0 is

u(x, t) = u(x, t = 0) + t
2

δ(x) (14)

We note that this candidate solution is not an integral solution in the usual sense, as the
square of a delta function (needed tomake sense of an integral solution to Eq. (2)) is unde-
fined by classical distribution theory (However, it is possible to overcome this technicality
using generalized distributions (Colombeau 1984)).

Regularizations for stationarity

Our ad hoc construction of a solution (14) to the Hopf equation which satisfies the con-
dition of stationarity does not lend itself well to numerical simulation. We thus find it
advantageous to try to construct a “irregularization” of the Hopf equation which yields
such a solution. Our attempted irregularization looks like:

ut +
(
1
2
u2f (ε,ux)

)
x

= 0, (15)

where the smooth & bounded function f (ε,ux) satisfies:

1. f (ε, 0) = 1
2. f (ε,−∞) = 0
3. f (0, ·) = 1.

For example,

ut +
(

1
2u

2

1 + ε u2x

)
x

= 0 (16)

is such an irregularization. The intuition behind this is that when a shock develops in the
Hopf equation, ux diverges to −∞, sending the modified flux 1

2u
2f (ε,ux) to zero. The

quenching of the flux will hopefully cause a pileup of mass behind the defect. On the other
hand, for small values of ε and away from defects, condition 3 above implies that f ≈ 1,
and the original Hopf equation is recovered (approximately).
(This prescription for the irregularization is not as general as possible—for example,

one also could add to the denominator of Eq. (16) a non-vanishing polynomial in u, which
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would reflect some sort of self-interaction effect. However, the “minimal” irregularization
of Eq. (16) is sufficient to produce the defects we are interested in. Moreover, the effect is
not peculiar to this particular form: We have also experimented with the irregularization

ut +
(
1
2
u2 exp

(−εu2x
))

x
= 0

and seen the same qualitative behavior.)
For numerical work, it is sometimes helpful to also add a small regularizing term to

ensure solutions stay relatively smooth—e.g.

ut +
(

1
2u

2

1 + ε u2x

)
x

= η ∂kx u, (17)

where k is typically 2 or 4.
Does this succeed in making the defect stationary? We begin to answer this by examin-

ing numerical results. Figure 2 shows simulations of Eq. (17) for ε = 0 & ε = 10−5 on the
unit interval with periodic boundary conditions, for parameters t = 1, k = 2, η = 10−6,
and a grid spacing dx of .002.
Clearly the irregularization has substantially slowed the movement of the shock and

thereby induced a delta-like spike to conserve mass. The extent to which this is a bona
fide delta shock is a delicate question (we will thus cautiously refer to this feature as a
delta spike). We mention three relevant considerations:

1. To begin with, the effect is inherently non-smooth, as for smooth solutions u(x, t)
of Eq. (16), it can be shown that u satisfies a maximum principle—

max{u(·, t)} = max{u(·, 0)} (18)

for all times t > 0 while the solution remains smooth. We motivate this as follows:
If we look at a curve y(t) such that u(·, t) attains a maximum at y(t), then we find

∂tu(y(t), t) = uxẏ + ut

= uxẏ −
(

1
2u

2

1 + ε u2x

)
x

= uxẏ −
(

uxu
1 + ε u2x

− εuxuxxu2(
1 + ε u2x

)2
)

= 0 (19)

Where the last expression vanishes because ux = 0 at the maximum y(t). This
shows that the maximum value of u is unchanging in time. (This argument can be
made more rigorous, avoiding the assumption that the maximum can be
parametrized by a differentiable curve y(t), but we will not do so here.) Note that a
similar result holds also in the case of Eq. (17) with a 2nd order (viscous)
regularization, with the modification that the maximum of u is then decreasing
in time.

2. Examining the delta spike closely reveals an internal structure. To provide some
perspective, we note first that Eq. (16) admits two relevant exact solutions, one of
the form a(t) + b(t)x (i.e. a straight line, moving in time), and the other a
stationary solution of the form
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α cosh
(
x − β

α
√

ε

)
. (20)

Experimentally, we find that the shape of the spike is well approximated by a
profile of the form (20), as shown in Fig. 3. More precisely, the form of the delta
spike consists of two partial coshes, one positive and one negative, separated by an
abrupt discontinuity. Away from the defect, the solution to Eq. (16) approaches the
aforementioned linear solution asymptotically in time. This eventual shape is
analogous to the asymptotic “N-wave” profile of solutions to the regular Hopf
equation. As discussed in the Appendix, it is possible to derive analytic expressions
for the parameters a(t), b(t), α, β describing this asymptotic form, and we find
good agreement between simulation and these analytic values.
An important feature of the cosh profile (20) is that its width scales like

√
ε. To

conserve mass, the height of the shock must therefore scale like 1/
√

ε. This
suggests that, although the delta spike is not truly a delta shock for non-zero values
of ε (indeed, the cosh profile (20) certainly does not qualify as a delta shock), as
ε → 0 the spike does indeed converge to a delta function. Experimentally, this is
what we seem to find (conditional upon some finessing of the numerical methods),
as discussed in the next point.

3. Establishing numerical convergence of our simulations is tricky for two reasons:
Firstly, since we are looking for convergence to a delta shock, we cannot hope to
have convergence in e.g. the L2 sense. Secondly, the Eq. (16) is highly unstable (not
surprisingly, since the irregularization is designed specifically to produce a delta
shock, which may be viewed as a sort of instability). After trying various
finite-differencing schemes, we found that the best results came from a type of
conservative upwind differencing, wherein u is differenced upwind but ux is not.
Explicitly, the semi-discrete formulation of Eq. (15) is

∂tui + �Fi−1 = 0

Fi =
⎧⎨
⎩
u2i f

(
ε, �ui

dx

)
(ui + ui+1) > 0

u2i+1f
(
ε, �ui

dx

)
(ui + ui+1) < 0

(21)

where � is the discrete forward difference operator (�ai = ai+1 − ai). All figures
presented herein were produced using this discretization. (For the regularized
version, Eq. (17), we also performed an operator splitting, evaluating the
regularization term in Fourier space for stability.) Despite being the most successful
numerical method we found, the stability properties of this discretization are not
entirely satisfactory. In particular, we found that when the grid size became
substantially smaller than the width of the delta spike (which is on the order of

√
ε),

the delta spike would become unstable and break apart into multiple, smaller delta
spikes. To overcome this difficulty, we let the mesh size dx and the width of the
delta

√
ε go to zero together, keeping dx/

√
ε fixed (recall that it was our intention

to let ε → 0 anyhow, so as to recover a solution to the original Hopf equation).
This technique appears to work, as seen in Fig. 4: The delta spike gets narrower and
higher, while remaining in essentially the same place, as dx, ε → 0 in this manner.

Although our simulations seem to establish convergence to a delta shock, it is a very
peculiar convergence wherein the strength ε of the irregularization must vanish together
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Fig. 4 Delta-shock convergence. (Color online) Close-up of the delta defects as dx, ε → 0,
√

ε ∼ dx

with the discretization length dx. The fact that the width of the delta spike must be kept
close to dx suggests that there may be some sort of resonance between the irregulariza-
tion of Eq. (16) and the grid which drives the formation of the spike (especially in light
of the maximum principle mentioned previously). Nonetheless, we can still hope to pro-
duce a meaningful weak solution for the Hopf equation in this way. It is not clear from
our studies whether the necessity of this procedure is a property of the irregularization,
the discretization, or the Hopf equation itself. This is an interesting subject for further
exploration.

Physical motivation: delta shocks and dislocation walls
Our interest in delta shocks is motivated by a tangible physical question. Why do dislo-
cations in crystals form walls (Limkumnerd and Sethna 2006; Chen et al. 2010)? Briefly,
a crystal is a regular array of atoms. A dislocation line is a flaw in that array, such as the
edge dislocation formed by the boundary of an extra plane of atoms, or the screw disloca-
tion forming the central line where planes form a ‘spiral staircase’ (Hirth and Lothe 1982).
These dislocations move to mediate plastic deformation when the crystal is bent, and
form tangles that organize into wall-like structures called cell walls (Hughes et al. 1998).
In a continuum theory of dislocation dynamics, such walls must be described as delta
shocks: their density scales as the inverse square of the lattice constant, which vanishes in
the continuum limit.
One class of continuum dislocation dynamics theories (Roy and Acharya 2005;

Limkumnerd and Sethna 2006) do form such delta shocks. In these theories, the disloca-
tions move with a common velocity F . If one describes an incipient wall in the yz plane
with a dislocation density that depends only on x, the dependence of this velocity on the
dislocation density simplifies (Limkumnerd and Sethna 2006) to the Hopf equation:

Ft +
(
1
2
F2

)
x

= 0. (22)
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When the Hopf equation forms a step-like shock, the entrained dislocations pile up into
a delta shock, forming a wall.
The central physical question is how that wall should evolve after it forms. If we

regularize the Hopf Eq. (22) into Burger’s equation, the dislocation wall moves along
with the Rankine-Hugoniot velocity. This produces a self-consistent, sensible model
(Chen et al. 2010, 2013), but one that is unsatisfying in two regards. First, the velocity of
dislocation walls in crystals is determined by the microstructure of the walls and not by
continuum properties. Secondly, generalizations of this continuum theory have differing
velocities for the different components of the dislocation density – smearing the resulting
walls.
In particular, at some junctions where two dislocations intersect, the point of inter-

section can be pinned in place (so-called sessile dislocation junctions (Hirth and Lothe
1982)). Dislocation walls can also be pinned by impurities that segregate to the boundary.
This provides the motivation for our study in “Stationarity” section of the Hopf Eq. (22)
with stationary shocks.
We should note that the behavior of both our model in two and three dimensions and

experimental dislocation systems under stress is more complex than simple wall singu-
larities. There they produce complex cellular structures, which in our models and some
experiments form self-similar, fractal morphologies. Our theories in higher dimensions
show clear analogies (Choi et al. 2012) to the behavior of the Euler equation (the invis-
cid limit of Navier-Stokes). Nonetheless, these structures are complex, ramified wall-like
entities, whose dynamics should be controlled by physics on themicroscopic atomic scale,
not by the continuum laws.

Conclusions
We have seen that delta shocks arise naturally in a variety of systems of conservation
laws, and their presence can often be traced to an incompatibility of the flow of the con-
served quantity and the motion of defects. Although most of the existing examples of
delta shocks do not have direct physical interpretation, the case of cell walls in crystals
does appear to furnish such an example.
A recurring theme in our presentation has been the importance of developing numer-

ical techniques capable of handling defects with more exotic behavior than traditional,
viscous shocks. Ideally, one would like to be able to specify whatever defect behavior is
believed appropriate for a given system and have numerical techniques which respect that
behavior. In lieu of such a very general approach to simulating conservation laws, wemust
instead focus on specific classes of defect behavior which we believe are important. To
this end, we propose further study of the stationarity condition introduced above.
We have concocted an “irregularization” (15-17) of the Hopf equation which appears

numerically to exhibit delta shocks, suggesting a possible avenue to development of the
aforementioned numerical methods for delta shocks. Though we are far from showing
that these apparent deltas are bona fide, we nonetheless think that the irregularization
and the defects it yields are interesting in their own right and merit continued study.

Appendix
We present here some further numerical and analytical observations (mostly without
details or proofs) for the irregularization
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ut +
(

1
2u

2

1 + ε u2x

)
x

= 0. (23)

In particular, we sketch a systematic way to approximate the asymptotic form of solutions
to this equation.
Three useful characteristics of the regular Hopf equation can be shown to also hold for

smooth solutions of this more general equation:

1. The maximum principle mentioned above.
2. Zero-crossings of a solution to Eq. (23) remain fixed in time.
3. The total mass between any two zero-crossings is conserved.

The second and third items above allows us to predict (analytically, approximately) the
asymptotic form of solutions to Eq. (23). We sketch this analysis as follows: Shocks tend
to form on downwards-going zero crossings, and away from shocks the solution becomes
linear at large times. The overall profile of the solution thus is linear everywhere except
at the shocks, where it is approximated by the cosh profile mentioned above. The station-
arity of upwards-going zero crossings allows for analytical evaluation of the slope there,
which asymptotically must equal the slope of the entire linear region of the solution.
Explicitly, the slope ux at a zero crossing xzc satisfies the ODE

0 = ∂tux(xzc, t) + 1
2

(
u (xzc, t)2

1 + εux (xzc, t)2

)
xx

= ∂tux(xzc, t) +
(

ux (xzc, t)2

1 + εux (xzc, t)2

)
(24)

which is obtained by differentiating Eq. (23) w.r.t. x and noting that all terms with a factor
of u vanish. This ODE (24) can be solved analytically, providing the asymptotic form of
the linear part of the solution.
The third item above allows us to evaluate the mass of the delta, which is just the differ-

ence between the total initial mass between two zero-crossings and the eventual mass of
the linear solution on the same region. Examining the cosh profile of the delta mentioned
above,

α cosh
(
x − β

α
√

ε

)
,

we see that α must equal the height at which the delta begins, which can be determined
from the linear solution. Thus α is determined, and then β can be determined from the
known mass of the delta.
Stringing together the above arguments allows a piecewise description of the solution

across the entire domain. This analytic, approximate solution is found to agree reason-
ably well with simulation—for instance, the cosh profile shown in Fig. 3 uses parameters
calculated in this way.
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