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Abstract

An exact analytical solution of the Fick’s second law was developed and applied to
the mixed-mode growth of a multicomponent ellipsoidal precipitate growing with
constant eccentricities in the quasi-stationary regime. The solution is exact if the
nominal composition, equilibrium concentrations and material properties are
assumed constant, and can be applied to compounds having no limitations in the
number of components. The solution was compared to the solution calculated by a
diffusion-controlled application software and it was found that the solute
concentrations at the interface can be determined knowing only the nominal
composition, the full equilibrium concentrations and the coefficients of diffusion. The
thermodynamic calculations owing to find alternative tie-lines are proven to be
useless in the mixed-mode model. From this, it appears that the search of alternative
tie-lines is computationally counterproductive, even when the interface has a very
high mobility. A more efficient computational scheme is possible by considering that
a moving interface is not at equilibrium.

Keywords: Mixed-mode, Interfacial mobility, Ellipsoidal precipitate, Multicomponent
diffusion

Introduction
The diffusional growth of precipitates in a supersaturated matrix is one of the most

fundamental problems in metallurgy. Although this topic is fully addressed in text-

books (Christian, 1965; Aaronson et al., 2010; Kozeschnik, 2013a), accurate estimations

of growth velocities are difficult because of the assumptions considered to obtain a so-

lution. For the time being, as pointed out by E. Kozeschnik in his book, “there exist no

general closed analytical solutions for the multicomponent growth of precipitates”

(Kozeschnik, 2013b). The only solutions available today are those obtained for binary

systems in the quasi steady-state regime. Zener (Zener, 1949) provided the solution for

spherical precipitates in the diffusion control mode while Horvey and Cahn (Horvay &

Cahn, 1961), as well as Ham (Ham, 1959), provided the solution in the same mode for

the shape preserving growth of ellipsoidal precipitates. Larouche (Larouche, 2017)

upgraded the solution of the latter precipitates for the mixed-mode growth regime,

where the growth is partly controlled by diffusion and the interface. The reason why it

is difficult to obtain a closed analytical solution for multicomponent precipitates when

one assumes local equilibrium at the interface is because there are too many con-

straints at the interface. To understand the problem, let us consider the formation of a
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precipitate AxBy in a binary system rich in species A. In the quasi steady-state regime,

the boundary condition at infinity is c = c where c is the molar concentration and c is

the nominal composition of solute. The problem is solved by imposing two boundary

conditions at the interface. The first one is the Stefan condition, which ensures that the

velocity of the boundary is equal to the velocity imposed by the flux of atoms coming

from the matrix. The second boundary condition is the concentration of solute at the

interface, which is imposed by the local equilibrium assumption in the diffusion con-

trolled mode. These two boundary conditions are enough to find the two unknowns at

a given time, which are the size of the precipitate and the matrix solute concentration

gradient at the interface. Problems arise when one considers the growth of a precipitate

BxCy in a ternary system rich in species A. In this case, one unknown is added, which

is the matrix solute concentration gradient at the interface of solute C. However, this

adds two new boundary conditions. These are the Stefan boundary condition and the

local equilibrium assumption for solute C. So, in this case, one has to deal with a prob-

lem having 4 boundary conditions at the interface and 3 unknowns, which are the size

of the precipitate and the matrix solute concentration gradients at the interface for sol-

utes B and C. And for each species added in the composition of the precipitate, one

has to add two new boundary conditions for only one extra unknown. To address this

problem, Kirkaldy (Kirkaldy, 1958) and others suggested that there is only one inde-

pendent solute concentration at the interface while the others are dependent to each

other. Their determination depends on the operative tie-line in the phase diagram,

which evolves according to the solute diffusivity and the degree of advancement of the

reaction. In general, the operative tie-line differs from the conventional tie-line (deter-

mined when the system is at equilibrium) and the computational scheme used to solve

the set of equations is not straightforward. Moreover, a mapping of the multicompo-

nent phase diagram is mandatory to calculate the operative solute partitioning, even

under isothermal growth. The application software DICTRA (Andersson et al., 2002) is

well known to provide a numerical procedure solving the moving boundary problem

for one-dimensional geometries. But one can testify about the difficulty of getting a so-

lution with this software when the starting values cannot be found at the first time step.

And this happens notably when the precipitate grows by the diffusion of two and more

solute elements.

In this paper, an exact analytical solution of the shape preserving growth of a multi-

component ellipsoidal precipitate in the quasi stationary regime is presented. The solu-

tion is then applied for the growth of a β″ needle shaped particle growing in the

Al-Mg-Si system. The advantages of this approach, involving the interfacial mobility,

are further highlighted and discussed. Finally, a comparison with the solution provided

by the application software DICTRA is performed for a spherical Mg2Si precipitate

growing in an Aluminium matrix.

The role of the interfacial mobility in the early stage of the growth
When a precipitate β is growing at the expense of a matrix α, there is a flux J1 (mol m−

2 s− 1) of atoms crossing the boundary in the direction of the precipitate and a flux J2 of

atoms going back to the matrix. The net rate of attachment is equal to J1 – J2 multi-

plied by the surface of the boundary. If Δμi (J mol− 1 of i) is the reduction of energy per
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mole of solute i, which remains attached to the precipitate, then the net reduction of

free energy produced by the transfer of all species composing the precipitate will be:

ΔF� ¼
XI
i¼1

NiΔμi ð1Þ

Where Ni is the number of moles of atoms condensing onto the precipitate and I is

the number of species composing the precipitate. Dividing Eq. (1) by the total number

of moles of atoms captured by the precipitate one obtains (Hillert, 2008):

dF�

dN
¼
XI
i¼1

ciβ � Δμi ¼
XI
i¼1

ciβ � μα�i −μβ�i
� �

ð2Þ

Where ciβ is the molar fraction of element i in the precipitate and μφ�i is the chemical

potential of element i in phase φ at the interface. The term dF*/dN is the driving force

for boundary migration. For an ellipsoidal precipitate growing with constant eccentrici-

ties (See Fig. 1), one can characterize the boundary velocity by one of the principal

directions.

Choosing the longest dimension a1 (m) to characterize the growth velocity of the pre-

cipitate, one can write (Christian, 1965):

da1
dt

¼ M
Vm

� dF
dN

�
ð3Þ

where M (m4 J− 1 s− 1) is the mobility of the interface and Vm (m3 mol− 1) is the molar

volume of the precipitate. Eq. (3) can be considered as the definition of the interfacial

mobility, which in this case is related to the growth in the direction of the longest axis.

One can evaluate the driving force with the following equation (Larouche, 2017):

dF
dN

�
¼ −

2Vmγ3
a3

þ
XI
i¼1

ciβRT ln
c�i
c∞i eq

 !
ð4Þ

Where c�i is the matrix molar fraction of solute i at the interface, c∞i eq is the equilib-

rium matrix molar fraction as given by the phase diagram (planar interface), R (J mol−

1 K− 1) is the gas constant and γ3 (J m− 2) is the interfacial energy where the surface is

perpendicular to the a3 axis. Notice that Eq. (4) comes from the following expression

of the driving force:

Fig. 1 Ellipsoid with semi-axis of length a1, a2 and a3
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dF
dN

�
¼ −

2Vmγ3
a3

þ
XI
i¼1

ciβRT ln
a�i
a∞i eq

 !
ð5Þ

where the molar fractions of element i are replaced by the activities of the same elem-

ent. The two variables are proportional via the chemical thermodynamic factors ϒ so

that: a =ϒ ⋅ c. In most systems, ϒ is nearly a constant when the solute contents are

relatively low. In such cases, one can easily justify using Eq. (4) instead of Eq. (5). The

term containing γ3accounts for the increase in surface free energy when the volume of

the precipitate increases. This is known as the Gibbs-Thomson effect. Notice that for a

shape invariant particle having full inversion symmetry, Johnson has shown (Johnson,

1965), using the construction given by Wulff, that the ratio γi/ai is constant in all direc-

tions. Eq. (4) can be rewritten as follow:

dF�

dN
¼ RT

XI
i¼1

ciβ � ln
c�i
c�i eq

 !
ð6Þ

Where:

c�i eq ¼ c∞i eq exp
2Vmγ3

I � ciβ � RT � a3

 !
ð7Þ

The last equation shows that the impact of the Gibbs-Thomson effect is to increase

the equilibrium molar fraction of solute in the matrix because of the finite size of the

precipitate. If local equilibrium is assumed at the interface, it follows that c�i ¼ c�i eqand

the driving force vanishes. According to Eq. (3), the velocity should be equal to zero in

this case, unless the interfacial mobility → ∞ to get a finite migration velocity. But the

interfacial mobility cannot be infinite since it is function of temperature and can be

expressed as (Christian, 1965):

M ¼ Ω
RT

exp −
Ea

RT

� �
ð8Þ

where Ea (J mol− 1) is the activation energy for the migration of the interface and Ω

(m4 mol− 1 s− 1) is a pre-exponential factor. In fact, the local equilibrium assumption

must be understood like c�i ≈ c�i eq , but a finite driving force, even small, is always acting

when the interface is moving. Such a condition is correct if the precipitate has grown

during a time long enough allowing the solute concentration at the interface to get

close to its equilibrium value. But when the reaction is just starting, the solute concen-

tration of the matrix at the interface is out of equilibrium. Based on their model of the

mixed-mode phase transformations in the solid state, Sietsma and van der Zwaag

(Sietsma & van der Zwaag, 2004) concluded that the initial stage of each phase trans-

formation is interface-controlled in all cases. This implies that the solute concentration

in the matrix at the nucleus-matrix interface remains equal to the nominal concentra-

tion during the nucleation stage because of the large surface/volume ratio of the nu-

cleus. So if one seeks for a solution which captures the early stage of growth, one has

to consider the mobility of the interface in the equations. The problem must then be

solved by assuming the mixed-mode regime of growth.
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Mathematical analysis
The detailed solution of the moving boundary problem of an ellipsoidal precipitate

growing with constant eccentricities in the quasi stationary mode has been presented

in (Larouche, 2017) for a binary alloy. Without repeating all the details contained in

this paper, we will summarize the most important steps of the solution procedure.

The Fick’s second law in the quasi-stationary regime can be written as:

D � ∇ 2c ¼ ∂c
∂t

¼ ∇
!
c � d r!

dt
ð9Þ

Where D is the coefficient of diffusion and r! is the vector position. Assuming a

shape conservative growth (eccentricities remain constant) and using the ellipsoidal co-

ordinates, one obtains a general solution:

c−c ¼ c�−cð Þ F ξð Þ
F ξ0ð Þ
� �

ð10Þ

where c* is the concentration at the interface, c is the concentration at infinity, ξ is the

ellipsoidal coordinate defined in the reference frame travelling with the moving bound-

ary, ξ0 is the ellipsoidal coordinate corresponding to the interface in this frame and F(ξ)

is a particular function of ξ expressed as:

F ξð Þ ¼
Zξ
∞

exp −
k2ξ2

4D

� �
dξffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2−H2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−H2

2

q ð11Þ

The variables ξ, H2 and H3 are related to the static (Eulerian) frame and the shape of

the boundary according to the following relationships:

ξ ¼ ρ=kt1=2 ð12Þ

H2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a21−a

2
3

p
kt1=2

ð13Þ

H3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a21−a

2
2

p
kt1=2

ð14Þ

Where t is the time and ρ corresponds to an ellipsoidal surface in the Eulerian ellips-

oidal system of coordinates. The constant k is called the interface migration coefficient

because it was introduced with the travelling set of coordinates. At this stage, there are

3 variables that have to be determined for a given time. These are the size of the pre-

cipitate a1, the concentration at the interface c* and the constant k. This constant must

be set in order to adapt the velocity of the reference frame Vr to the velocity of the

interface at the beginning of the mixed-mode regime. Before this time (tc), the growth

is assumed to be 100% controlled by the interface. The solution is valid only after this

time.

Two boundary conditions must be imposed at the interface:

BC#1.Mass conservation across the interface (Stefan condition)
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_N ¼ −

Z
S

J � dS ¼ ðc�β−c�Þ �
dV
dt

, where S and V are respectively the surface and the

volume of the precipitate

BC#2.Growth velocity governed by the mobility of the interface as expressed by Eq. (3)

With these 2 boundary conditions, one can determine a1 and c* for any time > tc,

once the constant k has been set. This procedure is sufficient for a binary alloy. But

when two solutes and more diffuse during the growth of a precipitate, we have as many

Stefan boundary conditions (BC #1) as there are species involved.

Now, we will rewrite the boundary conditions for the multicomponent alloys, assum-

ing that the partial molar volume of the elements are the same and invariant in both

phases. Following the developments detailed in (Larouche, 2017), the BC#1 condition

applied to each solute i can be written as:

da1
dt

¼ Di

a21 �
ffiffiffiffiffiffiffiffiffiffiffi
1−e212

p ffiffiffiffiffiffiffiffiffiffiffi
1−e231

p

� c�i −ci
	 

ciβ−c

�
i

� � exp −
k2ξ20
4Di

� �
Zξ0
∞

ξ2−H2
3

	 
−1=2
ξ2−H2

2

	 
−1=2
exp −

k2ξ2

4Di

� �
dξ

ð15Þ

where:

ci is the nominal molar fraction of solute i in the matrix,

Di (m
2 s− 1) is the coefficient of diffusion of solute i in the matrix phase,

e12 and e31 are the eccentricities of the ellipsoidal precipitate. These are given by:

e12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a2=a1ð Þ2

q
ð16Þ

e31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− a3=a1ð Þ2

q
ð17Þ

Notice that the boundary condition expressed by Eq. (15) is the same as Eq. (40) in (Lar-

ouche, 2017), except that we have now as many conditions to satisfy that there are species

condensing onto the precipitate. Inserting Eqs (12), (13) and (14) into (15), one obtains:

da1
dt

¼ 1

a21 � k
ffiffi
t

p � ci−c�i
ciβ−c

�
i

 !
�

1−e212
	 
−1=2

1−e231
	 
−1=2 � Di exp −

a21
4Di � t

� �
Z∞
a1

ρ2−e212a
2
1

	 
−1=2
ρ2−e231a

2
1

	 
−1=2
exp −

ρ2

4Di � t
� �

dρ

ð18Þ

The other boundary condition to apply at the interface is the one imposed by Eq. (3).

da1
dt

¼ MRT
Vm

XI
i¼1

ciβ � ln
c�i
c�i eq

 !
ð19Þ

Now we have to evaluate the constant k. The particularity of the mixed-mode model

is that it does not start at time 0. It starts at a time called tc, which is the time spent
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during the 100% interface control regime. At this time, it is expected that the precipi-

tate grows steadily in a quasi-stationary mode, which is characterized by the interface

migration coefficient k. Figure 2 presents the expected evolution of the interfacial vel-

ocity of a precipitate growing in a supersaturated matrix.

Before tc, one assumes that the growth rate of a precipitate emerging successfully

from the nucleation process is limited by its interfacial mobility. The maximum velocity

attainable during this period, called υc, is obtained when the full driving force is ap-

plied, which occurs when c�i ¼ ci in Eq. (19): Therefore, one can write:

υc ¼ MRT
Vm

XI
i¼1

ciβ � ln
ci
c�i eq

 !
ð20Þ

So, at t = tc, the size of the precipitate is given by:

ac ¼ υc � tc ð21Þ

Using the procedure followed in (Larouche, 2017), one can show that the velocity of

the reference frame following the interface in the mixed mode regime is given by:

Vr ¼ a1
2kt3=2

ð22Þ

Combining Eqs (21) and Eq. (22), the latter evaluated at t = tc, a1 = ac and Vr = υc, on

obtains:

k ¼ 1
2

ffiffiffiffiffi
υc
ac

r
ð23Þ

Equation (18) must give the same value of da1/dt for all species involved in the reac-

tion. So, one can establish from this equation a set of I–1 equations enforcing the de-

pendency between the flux of solutes:

Fori i≠ j : f Dið Þ: c�i −ci
ciβ−c

�
i

 !
¼ f D j

	 

:

c�j−c j

c jβ−c
�
j

 !
ð24Þ

Where:

Fig. 2 Expected evolution of the interfacial velocity of a precipitate growing in a supersaturated matrix
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f Dið Þ ¼
Di exp −

a21
4Di � t

� �
Z∞
a1

ρ2−e212a
2
1

	 
−1=2
ρ2−e231a

2
1

	 
−1=2
exp −

ρ2

4Di � t
� �

dρ

ð25Þ

If the solute j = 1, is used as the independent specie, which could be anyone of the

species involved, the set of equations can be reduced to only 1 equation with one un-

known. First, one has to enforce the equality between the velocity of the reference

frame, Eq. (22), and the velocity imposed by Eq. (19):

a1
2kt3=2

¼ MRT
Vm

XI
i¼1

ciβ � ln
c�i
c�i eq

 !
ð26Þ

Isolating c�i from Eq. (24) and inserting the result into Eq. (26), then one obtains:

a1
2kt3=2

¼ MRT
Vm

XI
i¼1

ciβ � ln

ci þ ciβ
f D1ð Þ
f Dið Þ :

c�1−c1
c1β−c

�
1

 !

c�i eq 1þ f D1ð Þ
f Dið Þ :

c�1−c1
c1β−c

�
1

 !" #
0
BBBB@

1
CCCCA ð27Þ

Now, one has to enforce the equality between the velocity of the reference frame, Eq.

(22), and the velocity imposed by the Stefan boundary condition, Eq. (18). This gives

the following equation:

ci−c�i
ciβ−c

�
i

¼ a31
ffiffiffiffiffiffiffiffiffiffiffi
1−e212

p ffiffiffiffiffiffiffiffiffiffiffi
1−e231

p
2Di � t exp

a21
4Di � t
� �Z∞

a1

ρ2−e212a
2
1

	 
−1=2
ρ2−e231a

2
1

	 
−1=2
exp −

ρ2

4Di � t
� �� �

dρ ð28Þ

The variable c�1 can be isolated from Eq. (28) by setting i = 1. The expression obtained

is inserted into Eq. (27) and one obtains one equation with a1 as the unknown. The lat-

ter is determined at a given time t by solving this equation. Once a1 is known, the value

of c�1 can be retrieved from Eq. (28) and the other c�i from the following equation:

c�i ¼ ci þ ciβ
f D1ð Þ
f Dið Þ :

c�1−c1
c1β−c

�
1

 !" #
� 1þ f D1ð Þ

f Dið Þ :
c�1−c1
c1β−c

�
1

 !" #−1
ð29Þ

The solution is then completed.

Application of the model
We will consider the growth of a needle-shape β″ precipitate in an aluminium matrix

having the nominal composition given in Table 1.

The precipitate will grow at a temperature of 453 K and, at the beginning of the

mixed-mode regime, the dimensions of the needle-shape precipitate are assumed to be:

a1 = ac = 6 nm

Table 1 Chemical composition of the alloy used for the mixed-mode growth modelling

Si Mg Al

at.% 1.24 0.35 Bal.
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a2 = a3 = 0.67 nm

We will suppose that this size is sufficiently large to ignore the Gibbs-Thomson ef-

fect. Therefore the surface energy γ will be made equal to 0. Table 2 gives the equilib-

rium data calculated with the MatCalc software v. 5.62 (Kozeschnik et al., 2004) using

the thermodynamic, mobility diffusion and physical property databases assessed by

Povoden-Karadeniz (Povoden-Karadeniz, 2015a; Povoden-Karadeniz, 2015b;

Povoden-Karadeniz, 2012).

Results
Figure 3 presents the evolution of the semi-axis length a1, as a function of time, of the

β″ precipitate calculated with two different interfacial mobilities. The two curves merge

when the mixed-mode regime becomes essentially diffusion controlled in both cases.

The time after which the process may be considered as diffusion controlled depends on

the mobility of the interface. Since the mobility is a thermally activated process, one

may expect that it will have a strong impact on the growth behavior at low tempera-

tures. The time evolutions of Mg and Si concentration at the interface of the matrix are

shown in Fig. 4. Both the concentrations of solutes at the interface start at the nominal

concentrations and decrease at a rate which depends on the interfacial mobility. For

very long times, the concentrations at the interface stabilize at a value which differs

from the equilibrium value. For magnesium, the stabilized concentration is above the

equilibrium value while for silicon, it is below. It is easy to show that the combined

driving force calculated with Eq. (4) is vanishing with time, the negative driving force

of silicon cancelling the positive driving force of the other species (Mg and Al). This re-

sult indicates that when the mixed-mode growth is becoming largely diffusion con-

trolled, the total driving force at the interface is getting close to zero. In a

multicomponent system, this condition means that the sum of each driving force will

be zero, though the interfacial concentration of each species will not be equal to the full

equilibrium concentration. The offset obtained between the stabilized concentration

and the equilibrium concentration comes from the fact that the quasi stationary growth

regime is not equivalent to the full equilibrium situation. In the former case, the nom-

inal concentration still prevails at infinity and consequently the average concentrations

remain equal to the nominal concentrations. But in a finite system, the average concen-

trations gradually change towards their equilibrium values as the growth proceeds. The

full equilibrium situation is therefore only possible for a finite system.

Table 2 Equilibrium values calculated at 453 K and 101 kPa with the nominal composition given
in Table 1. The Al matrix and the precipitate β″ were considered as the only active phases

Molar fraction of Mg in the precipitate: c�β;Mg 0.4545

Molar fraction of Si in the precipitate: c�β;Si 0.5105

Molar fraction of Al in the precipitate: c�β;Al 0.0350

Molar fraction of Mg in the matrix:c∞eq;Mg 7.06E-5

Molar fraction of Si in the matrix: c∞eq;Si 8.61E-3

Coefficient of diffusion of Mg in the matrix (m2/s) 2.01E-19

Coefficient of diffusion of Si in the matrix (m2/s) 1.35E-19

Molar volume of the precipitate (m3/mol) 1.048E-5
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Discussion
For the first time, an analytical solution is provided for the mixed-mode growth of

a multicomponent precipitate, the latter growing with the simultaneous diffusion of

several species in the matrix. In the example described above, 3 species were in-

volved in the formation of the precipitate. The method can include as much spe-

cies as wanted since it is always possible to reduce the number of equations to 1,

with only 1 unknown to find. This unknown is the size of the precipitate at a

given time. Once this variable is determined, the concentrations of all species at

the interface can be calculated easily. The method can therefore be applied for the

growth of any type of particle, under the condition that its composition is known

and invariant. The applicability of the solution is limited to situations where each

precipitate grows in a relatively large matrix since the solution is exact for one

precipitate growing in an infinite matrix. This is the same limitation which applies

with the popular Zener stationary approximate solution. However, the mixed-mode

growth solution takes into account the moving boundary problem under the as-

sumption of a quasi-stationary growth, unlike the Zener stationary approximate so-

lution, which ignores completely the term ∂c/∂t in the mass conservation equation.

The time evolution of the concentrations at the matrix interface (c�i ) is certainly

the most interesting result obtained as it can be considered as characteristic of

the mixed-mode growth. During the early stages of growth, the interface concen-

trations are equal to the nominal concentrations. After, they vary gradually with

time toward their stabilized value at a rate controlled by the interfacial mobility.

The offset between the final and equilibrium concentrations is produced by the

difference existing between the coefficients of diffusion of the 2 solutes. Indeed,

if one makes the calculations using the same coefficients of diffusion for the sol-

utes, then one obtains a perfect match between the final and equilibrium values.

Unlike the case where equilibrium is assumed at the interface, the time evolution

of c�i is free of the drastic change occurring at the beginning of the growth. This

gives a more realistic solution since the interfacial mobility is surely not infinite.

Diffusional growth of multicomponent precipitates can be simulated with the com-

mercial application software DICTRA, the latter being linked with the thermodynamic

software package Thermo-Calc (Andersson et al., 2002) for the calculation of equilib-

rium variables. DICTRA provides numerical solutions of the multicomponent diffusion

Fig. 3 Time evolution of the semi-axis length a1 calculated using 2 different interfacial mobilities
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equations in one dimension (planar, cylindrical or spherical) and perform a mass bal-

ance of diffusional flux across the interface to calculate the velocity of a moving bound-

ary. The reader interested in the mathematics behind DICTRA should consult

reference (Ågren, 1982) for the details relevant to the moving boundary problem. The

main assumption used by DICTRA is that equilibrium is achieved at the interface,

which means that the concentrations on both sides of the interface are ruled by the

phase diagram. This assumption is called local equilibrium. Few contributions are avail-

able in the literature where DICTRA was used to simulate the growth of precipitates

during the early stage of precipitation. The most prominent examples were proposed

for the growth of MxCy carbides in Fe rich matrix. Where M can be Fe or Cr (Chen et

al., 2008; Schneider & Inden, 2005; Ghosh & Olson, 2002). At the knowledge of the au-

thors, no examples have been published describing the early stage of precipitation in

aluminium alloys with DICTRA. A one-to-one comparison between our model and

DICTRA cannot be made since the former provides a solution for an infinite system

while the latter provides a solution for a finite system. But if the finite system is made

large enough, the solutions can be compared at least during the early stage of growth.

A DICTRA model simulating the growth of a spherical Mg2Si particle in a rich Alu-

minium matrix having the composition given in Table 1 was built for comparison pur-

poses. Since DICTRA does not simulate the growth of needle-like precipitates, one has

to set a mixed-mode calculation for a spherical-type of Mg2Si precipitate using the

same value for the different parameters. The equilibrium values used in the

Fig. 4 Evolution of the solute molar fractions, as a function of time, at the interface of a needle-shape
β″ precipitate growing in an aluminium matrix as calculated by the mixed-mode model

Naseri et al. Materials Theory  (2018) 2:4 Page 11 of 14



mixed-mode model were calculated with Thermo-Calc 2016a and the TTAl7 database

(TTAL7, 2010). The TTAl7 database was also used in the DICTRA simulation. Con-

stant coefficients of diffusion were set in the DICTRA macro using the command

“ENTER_MOBILITY_ESTIMATE”. The coefficient of diffusions and equilibrium con-

centrations were therefore the same in the mixed-mode calculation and the DICTRA

simulation. Table 3 summarizes the data used for the DICTRA and the mixed-mode

calculations.

Figure 5 presents the evolution of the solute interfacial concentrations as calculated

by the two models. According to the DICTRA simulation, the interfacial concentration

of silicon varies between 0.831 at% and 1.07 at% during the first 70 s and then stabilises

at 0.980 at% for a while before increasing steadily toward the full equilibrium concen-

tration (1.07 at%). For Mg, the DICTRA simulation predicts a very rapid stabilization

of the interfacial concentration to the expected full equilibrium concentration. The

mass balance is made possible in this example by the interfacial concentration of Si,

which deviates from the full equilibrium concentration at the beginning of the reaction

until the finite size of the system allows attaining the full equilibrium situation. What is

interesting to notice is that, after the short transient period of 70 s, the interfacial con-

centration of Si predicted by DICTRA remains constant for approximately one hour at

a value which differs by only 0.013% of the final equilibrium interfacial concentration

of Si predicted by the mixed-mode model (0.980% versus 0.993%). During this hour of

growth, the size of the precipitate remains small in comparison to the size of the sys-

tem, so one can say that the growth regime during this period is close to the

quasi-stationary growth of a precipitate in an infinite system. The only difference is that

the mixed-mode model assumes a finite interfacial mobility instead of an infinite one,

so the time to reach the stabilized concentration is much longer for the mixed-mode

than it is for the diffusion control mode, the latter being theoretically stabilized at time

zero. But DICTRA needed 40 time steps to reach this quasi stabilized regime since the

process has to search for starting values, the latter depending on the phase diagram.

This search of starting values is not always successful in DICTRA simulations and,

when successful, the evolution of the interfacial concentration can be somewhat erratic

during the first steps since they are influenced by the setting values used in the numer-

ical computation. With the mixed-mode model, these stabilized concentrations can be

Table 3 Equilibrium values calculated at 453 K and 101 kPa with the nominal composition given
in Table 1. The Al matrix and the precipitateβ-Mg2Si were considered as the only active phases

Molar fraction of Mg in the precipitate: c�β;Mg 0.6667

Molar fraction of Si in the precipitate: c�β;Si 0.3333

Molar fraction of Mg in the matrix:c∞eq;Mg 2.14E-6

Molar fraction of Si in the matrix: c∞eq;Si 1.07E-2

Coefficient of diffusion of Mg in the matrix (m2/s) 2.01E-19

Coefficient of diffusion of Si in the matrix (m2/s) 1.35E-19

Molar volume of the precipitate (m3/mol) 1.000E-5

Radius of precipitate at the start of the mixed-mode regime: ac (nm) 0.4

Radius of precipitate at the start of the DICTRA simulation (nm) 0.4

Radius of the system in the DICTRA simulation (nm) 50

Surface energy: γ: 0
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calculated in a one step procedure by setting a very long time. This result indicates that

interfacial concentrations are not governed by alternative tie-lines, but only by the coef-

ficients of diffusion and the full equilibrium concentrations. No doubt that the robust-

ness of an application tool like DICTRA to simulate moving boundary problems would

be enhanced by using a boundary condition involving the mobility of the interface as

expressed by Eq. (3), instead of the local equilibrium assumption. If the interfacial mo-

bility is unknown, it would always be possible to find the diffusion controlled solution

by using the interfacial mobility as a penalty variable.

Conclusion
An exact analytical solution of the mixed-mode growth of a multicomponent ellipsoidal

precipitate having constant eccentricities was developed for the quasi stationary regime.

The solution was applied to simulate the growth of a needle shape (prolate spheroid)

Al-Mg-Si compound and a spherical Mg2Si compound growing in their aluminium

based matrix. A comparison made with the diffusion-controlled simulation software

DICTRA showed that the solute concentrations at the interface in the early stages of

the reaction can be found irrespective of local equilibrium considerations. The variables

having a significant effect are the full equilibrium concentrations, the nominal compos-

ition and the coefficients of diffusion. With the mixed-mode growth approach, multi-

component mapping of the phase diagram, allowing the determination of alternative

tie-lines, is not necessary to solve the theoretical model.
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