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Abstract
Continuum dislocation dynamics (CDD) aims at representing the evolution of systems
of curved and connected dislocation lines in terms of density-like field variables. Here
we discuss how the processes of dislocation multiplication and annihilation can be
described within such a framework. We show that both processes are associated with
changes in the volume density of dislocation loops: dislocation annihilation needs to
be envisaged in terms of the merging of dislocation loops, while conversely dislocation
multiplication is associated with the generation of new loops. Both findings point
towards the importance of including the volume density of loops (or ’curvature
density’) as an additional field variable into continuummodels of dislocation density
evolution. We explicitly show how this density is affected by loop mergers and loop
generation. The equations which result for the lowest order CDD theory allow us, after
spatial averaging and under the assumption of unidirectional deformation, to recover
the classical theory of Kocks and Mecking for the early stages of work hardening.
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Introduction
Since the discovery of dislocations as carriers of plastic deformation, developing a contin-
uum theory for motion and interaction of dislocations has been a challenging task. Such
a theory should address two interrelated problems: how to represent in a continuum set-
ting the motion of dislocations, hence the kinematics of curved and connected lines, and
how to capture dislocation interactions.
The classical continuum theory of dislocation (CCT) systems dates back to Kröner

(1958) and Nye (1953). This theory describes the dislocation system in terms of a rank-2
tensor field α defined as the curl of the plastic distortion, α = ∇ × βpl. The rate of the
plastic distortion due to the evolution of the dislocation density tensor reads ∂tβ

pl = v×α

where the dislocation velocity vector v is defined on the dislocation lines. The time
evolution of α becomes (Mura 1963)

∂tα = ∇×[ v × α] . (1)

This fundamental setting provided by the classical continuum theory of dislocation sys-
tems has, over the past two decades, inspired many models (e.g. (Sedláček et al. 2003;
Xiang 2009; Zhu andXiang 2015)). Irrespective of the specific formulation, amain charac-
teristic of the CCT is that, in each elementary volume, the dislocation tensor can measure
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only the minimum amount of dislocations which are necessary for geometrical compat-
ibility of plastic distortion (‘geometrically necessary’ dislocations (GND)). If additional
dislocations of zero net Burgers vector are present, CCT is bound to be incomplete as
a plasticity theory because the ‘redundant’ dislocations contribute to the averaged plas-
tic strain rate and this contribution must be accounted for. Conversely we can state that
CCT is working perfectly whenever ‘redundant’ dislocations are physically absent. This
condition is of course fulfilled for particular geometrical configurations, but in general
cases it can be only met if the linear dimension of the elementary volume of a simulation
falls below the distance over which dislocations spontaneously react and annihilate, such
that ’redundant’ dislocations cannot physically exist on the scale of the simulation. This
simple observation demonstrates the close connection between the problem of averaging
and the problem of annihilation - a connection which we will further investigate in detail
in “Annihilation” section of the present paper.
From the above argument we see that one method to deal with the averaging problem

is to remain faithful to the CCT framework and simply use a very high spatial resolution.
We mention, in particular, the recent formulation by El-Azab which incorporates statis-
tical phenomena such as cross-slip (Xia and El-Azab 2015) and time averaging (Xia et al.
2016) and has shown promising results in modelling dislocation pattern formation. This
formulation is based upon a decomposition of the tensor α into contributions of dislo-
cations from the different slip systems ς in the form α = ∑

ς ρς ⊗ bς where bς is the
Burgers vector of dislocations on slip system ς and the dislocation density vector ρς of
these dislocations points in their local line direction. Accordingly, the evolution of the
dislocation density tensor is written as ∂tα = ∑

ς ∂tρς ⊗ bς with ∂tρς = ∇×[vς × ρς ]
where the dislocation velocities vς are again slip system specific. We consider a decom-
position of the dislocation density tensor into slip system specific tensors as indispensable
for connecting continuum crystal plasticity to dislocation physics: it is otherwise impos-
sible to relate the dislocation velocity v in a meaningful manner to the physical processes
controlling dislocation glide and climb, as the glide and climb directions evidently depend
on the respective slip system. We therefore use a description of the dislocation system
by slip system specific dislocation density vectors as the starting point of our subsequent
discussion.
CCT formulated in terms of slip system specific dislocation density vectors with single-

dislocation resolution is a complete and kinematically exact plasticity theory but, as the
physical annihilation distance of dislocations is of the order of a few nanometers, its
numerical implementation may need more rather than less degrees of freedom com-
pared to a discrete dislocation dynamics model. There are nevertheless good reasons to
adopt such a formulation: Density based formulations allow us to use spatio-temporally
smoothed velocity fields which reduce the intermittency of dislocation motion in dis-
crete simulations. Even more than long-range interactions and complex kinematics, the
extreme intermittency of dislocation motion and the resulting numerical stiffness of
the simulations is a main factor that makes discrete dislocation dynamics simulations
computationally very expensive. Furthermore, in CCT, the elementary volume of the
simulation acts as a reaction volume and thus annihilation does not need any special
treatment.
Moving from the micro- to the macroscale requires the use of elementary volumes that

significantly exceed the annihilation distance of dislocations. Averaging operations are
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then needed which can account for the presence of ’redundant’ dislocations. Some con-
tinuum theories try to resolve the averaging problem by describing the microstructure by
multiple dislocation density fields which each represent a specific dislocation orientation
ϕ on a slip system ς . Accordingly, all dislocations of such a partial population move in
the same direction with the same local velocity v

ς
ϕ such that

〈
∂tρ

ς
ϕ

〉 ≈ ∇ × [
v

ς
ϕ × 〈ρς

ϕ 〉].
Along this line Groma, Zaiser and co-workers (Groma 1997; Zaiser et al. 2001; Groma et al.
2003) developed statistical approaches for evolution of 2D systems of straight, positive
and negative edge dislocations. Inspired by such 2Dmodels, Arsenlis et al. (2004); Reuber
et al. (2014); Leung et al. (2015) developed 3D models by considering additional orienta-
tions. However, extending the 2D approach to 3D systems where connected and curved
dislocation lines can move perpendicular to their line direction while remaining topolog-
ically connected is not straightforward, and most models use, for coupling the motion
of dislocations of different orientations, simplified kinematic rules that cannot in general
guarantee dislocation connectivity (see Monavari et al. (2016) for a detailed discussion).
The third line takes a mathematically rigorous approach towards averaged, density-

based representation of generic 3D systems of curved dislocation lines based on the idea
of envisaging dislocations in a higher dimensional phase space where densities carry
additional information about their line orientation and curvature in terms of continuous
orientation variables ϕ (Hochrainer 2007; Hochrainer et al. 2007). In this phase space,
the microstructure is described by dislocation orientation distribution functions (DODF)
ρ(r ,ϕ). Tracking the evolution of a higher dimensional ρ(r ,ϕ) can be a numerically
challenging task. Continuum dislocation dynamics (CDD) estimates the evolution of the
DODF in terms of its alignment tensor expansion series (Hochrainer 2015). The compo-
nents of the dislocation density alignment tensors can be envisaged as density-like fields
which contain more and more detailed information about the orientation distribution of
dislocations. CDD has been used to simulate various phenomena including dislocation
patterning (Sandfeld and Zaiser 2015; Wu et al. 2017b) and co-evolution of phase and
dislocation microstructure (Wu et al. 2017a). The formulation in terms of alignment ten-
sors has proven particularly versatile since one can formulate the elastic energy functional
of the dislocation system in terms of dislocation density alignment tensors (Zaiser 2015)
and then use this functional to derive the dislocation velocity in a thermodynamically
consistent manner (Hochrainer 2016).
Alignment tensor based CDD at present suffers from an important limitation:While the

total dislocation density changes due to elongation or shrinkage of dislocation loops, the
number of loops is a conserved quantity. This leads to unrealistic dislocation starvation
and hardening behaviour for bulk crystals (Monavari et al. 2014). The goal of the present
paper is to incorporate into the CDD theory mechanisms which change the number of
dislocation loops by accounting for the merger of loops consequent to local annihilation
of dislocation segments from different loops and for the formation of loops by operation
of sources. First we revisit the hierarchical evolution equations of CDD. Then we intro-
duce a kinematic model to describe the annihilation of dislocations in higher dimensional
phase space. We calculate the annihilation rate for the variables of the lowest-order CDD
theories. Then we introduce models for incorporating activation of Frank-Read sources,
cross slip sources and glissile junctions into CDD. We demonstrate that by incorpo-
rating of annihilation (loop merger) and sources (loop generation) into CDD, even a
lowest-order CDD formulation can predict the first 3 stages of work hardening.
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Continuum dislocation dynamics
Conventions and notations

We describe the kinematics of the deforming body by a displacement vector field u. Con-
sidering linearised kinematics of small deformations we use an additive decomposition of
the corresponding deformation gradient into elastic and plastic parts: ∇u = βel + βpl.
Dislocations of Burgers vectors bςare assumed to move only by glide (unless stated oth-
erwise) and are therefore confined to their slip planes with slip plane normal vectors nς .
This motion generates a plastic shear γ ς in the direction of the unit slip vector bς/bwhere
b is the modulus of bς . We use the following sign convention: A dislocation loop which
expands under positive resolved shear stress is called a positive loop, the corresponding
dislocation density vector ρς points in counter-clockwise direction with respect to the
slip plane normal nς . Summing the plastic shear tensors of all slip systems gives the plastic
distortion: βpl = ∑

ς γ ςnς ⊗ bς/b.
On the slip system level, without loss of generality, we use a Cartesian coordinate system

with unit vectors eς
1 = bς/b, e3 = nς and e2 = nς ×sssς . A slip system specific Levi-Civita

tensor ες with coordinates ε
ς
ij is constructed by contracting the fully antisymmetric Levi-

Civita operator with the slip plane normal, ες
ij = εikjn

ς

k . The operation t .ες =: t⊥ then
rotates a vector t on the slip plane clockwise by 90◦ around nς . In the following we drop,
for brevity, the superscript ς as long as definitions and calculations pertaining to a single
slip system are concerned.
The quantity which is fundamental to density based crystal plasticity models is the slip

system specific dislocation density vector ρ. The modulus of this vector defines a scalar
density ρ = |ρ| and the unit vector l = ρ/ρ gives the local dislocation direction. Themth

order power tensor of l is defined by the recursion relation l⊗1 = l , l⊗m+1 = l⊗m ⊗ l .
In the slip system coordinate system, l can be expressed in terms of the orientation angle
ϕ between the line tangent and the slip direction as l(ϕ) = cos(ϕ)e1 + sin(ϕ)e2. When
considering volume elements containing dislocations of many orientations, or ensem-
bles of dislocation systems where the same material point may in different realizations be
occupied by dislocations of different orientations, we express the local statistics of dislo-
cation orientations in terms of the probability density function pr(ϕ) of the orientation
angle ϕ within a volume element located at r . We denote pr(ϕ) as the local dislocation
orientation distribution function (DODF). The DODF is completely determined by the
set of moments 〈ϕn〉r but also by the expectation values of the power tensor series 〈ln〉r .
The latter quantities turn out to be particularly useful for setting up a kinematic theory.
Specifically, the so-called dislocation density alignment tensors

ρ(n)(r) := ρ〈l⊗n〉r = ρ

∮

pr(ϕ)l(ϕ)⊗n dϕ. (2)

turn out to be suitable field variables for constructing a statistically averaged theory of dis-
location kinematics. Components of the k-th order alignment tensor ρ(k)(r) are denoted
ρa1...ak . ρ̂

(n)(r) = ρ(n)(r)/ρ denotes normalization of an alignment tensor by dividing it
by the total dislocation density; this quantity equals the DODF-average of the nth order
power tensor of l . Tr(•) gives the trace of a symmetric alignment tensor by summation
over any two indices. The symmetric part of a tensor is denoted by [•]sym. The time
derivative of the quantity x is denoted by ∂t(x) or by ẋ.
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Kinematic equations of continuum dislocation dynamics (CDD) theory

Hochrainer (2015) derives the hierarchy of evolution equations for dislocation density
alignment tensors by first generalizing the CCT dislocation density tensor to a higher
dimensional space which is the direct product of the 3D Euclidean space and the space
of line directions (second-order dislocation density tensor, SODT). Kinematic evolution
equations for the SODT are obtained in the framework of the calculus of differential
forms and then used to derive equations for alignment tensors by spatial projection. For
a general and comprehensive treatment we refer the reader to Hochrainer (2015). Here
we motivate the same equations in terms of probabilistic averaging over single-valued
dislocation density fields, considering the case of deformation by dislocation glide.
We start from the slip system specific Mura equation in the form

∂tρ = ∇×[ v × ρ] . (3)

where for simplicity of notation we drop the slip system specific superscript ς and
we assume that the spatial resolution is sufficiently high such that the dislocation line
orientation l is uniquely defined in each spatial point. If deformation occurs by crystallo-
graphic slip, then the dislocation velocity vector must in this case have the local direction
ev = l × n = ρ × n/ρ. This implies that the Mura equation is kinematically non-linear:
writing the right-hand side out we get

∂tρ = ∇×[ l × n × ρv]= ∇ ×
[

ρ × n × ρ

|ρ| v
]

. (4)

where the velocity magnitude v depends on the local stress state and possibly on disloca-
tion inertia. This equation is non-linear even if the dislocation velocity v does not depend
on ρ, and this inherent kinematic non-linearity makes the equation difficult to average.
To obtain an equation which is linear in a dislocation density variable and therefore can
be averaged in a straightforward manner (i.e., by simply replacing the dislocation density
variable by its average) is, however, possible:We note that ρ = lρ and∇×l×n×l = −ε.∇ ,
hence

∂tρ = −ε · ∇(ρv). (5)

In addition we find because of ρ ⊗ b = ∇ × βpl that the plastic strain rate and the shear
strain rate on the considered slip system fulfil the Orowan equation

∂tβ
pl = [n ⊗ b] ρv = [n ⊗ sss] ∂tγ , ∂tγ = ρbv. (6)

We now need to derive an equation for the scalar density ρ. This is straightforward: we
use that ρ2 = ρ.ρ, hence ∂tρ = (ρ/ρ) ·∂tρ. After a few algebraic manipulations we obtain

∂tρ = ∇ · (ε · ρv) + qv (7)

where we introduced the notation

q := −ρ(∇ · ε · l). (8)

To interpret this new variable we observe that k = −∇·ε·l = ∂1l2−∂2l1 is the curvature
of the unit vector field l , i.e. the reciprocal radius of curvature of the dislocation line
(Theisel 1995). Hence the product q = ρk can be called a curvature density. Integration
of q over a large volume V yields the number of loops contained in V, hence, q may also
be envisaged as a loop density.
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The quantity q defines a new independent variable. Its evolution equation is obtained
from those of ρ and l = ρ/ρ. After some algebra we get

∂tq = ∇ ·
(
vQ − ρ(2) · ∇v

)
. (9)

where we have taken care to write the right-hand side in a form that contains density- and
curvature-density like variables in a linear manner. As a consequence, on the right hand
side appears a second order tensor ρ(2) = ρl ⊗ l = ρ ⊗ ρ/ρ. By using the fact that ρ is
divergence-free, ∇ .ρ = ∇ .(ρl) = 0, we can show that the vector Q = qε · l derives from
this tensor according to Q = ∇ .ρ(2).
We thus find that the equation for the curvature density q contains a rank-2 tensor

which can be envisaged as the normalized power tensor of the dislocation density vec-
tor. On the next higher level, we realize that the equation for ρ(2) contains higher-order
curvature tensors, leading to an infinite hierarchy of equations given in full by

∂tρ = ∇ · (vε · ρ) + v, (10)

∂tρ
(n) =

[
−ε · ∇

(
vρ(n−1)

)
+ (n − 1)vQ(n) − (n − 1)ε · ρ(n+1) · ∇v

]

sym
, (11)

∂tq = ∇ ·
(
vQ(1) − ρ(2) · ∇v

)
, (12)

where Q(n) are auxiliary symmetric curvature tensors defined as

Q(n) = qε · l ⊗ ε · l ⊗ l⊗n−2. (13)

So far, we have simply re-written the single, kinematically non-linear Mura equation
in terms of an equivalent infinite hierarchy of kinematically linear equations for an infi-
nite set of dislocation density-like and curvature-density like variables. The idea behind
this approach becomes evident as soon as we proceed to perform averages over volumes
containing dislocations of many orientations, or over ensembles where in different real-
izations the same spatial point may be occupied by dislocations of different orientations.
The fact that our equations are linear in the density-like variables allows us to average
them over the DODF p(ϕ) while retaining the functional form of the equations. The aver-
aging simply replaces the normalized power tensors of the dislocation density vector
by their DODF-weighted averages, i.e., by the respective dislocation density alignment
tensors:

ρ(n)(r) →
∮

pr(ϕ)ρ(n)(r)dϕ (14)

and similarly

Q(n)(r) →
∮

pr(ϕ)Q(n)(r)dϕ. (15)

The problem remains that we now need to close the infinite hierarchy of evolution
equations of the alignment tensors. A theory that uses alignment tensors of order k can
be completely specified by the evolution equation of q together with the equations for the
ρ(k−1) and ρ(k) tensors (lower order tensors can be obtained from these by contraction).
To close the theory, the tensor ρ(k+1) needs to be approximated in terms of lower order
tensors. A systematic approach for deriving closure approximations was proposed by
Monavari (Monavari et al. 2016). The fundamental idea is to use the Maximum Informa-
tion Entropy Principle (MIEP) in order to estimate the DODF based upon the information
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contained in alignment tensors up to order k, and then use the estimated DODF to eval-
uate, from Eq. (2), the missing alignment tensor ρ(k+1). This allows to close the evolution
equations at any desired level.
For example, closing the theory at zeroth order is tantamount to assuming a uni-

form DODF for which the corresponding closure relation reads ρ(1) ≈ 0. The evolution
equations of CDD(0) then are simply

∂tρ = vq (16)

∂tq = 0 (17)

These equations represent the expansion of a system consisting of a constant
number of loops. In “CDD(0)” section we demonstrate that, after generalization to
incorporate dislocation generation and annihilation, already CDD(0) provides a the-
oretical foundation for describing early stages of work hardening. CDD(0) is, how-
ever, a local plasticity theory and therefore can not describe phenomena that are
explicitly related to spatial transport of dislocations. To correctly capture the spatial
distribution of dislocations and the related fluxes in an inhomogeneous microstruc-
ture one needs to consider the evolution equations of ρ and/or of ρ(2). Closing the
evolution equations at the level of ρ, or of ρ(2) yields the the first order CDD(1)

and second order CDD(2) theories respectively. The DODF of these theories have a
more complex structure that allows for directional anisotropy which we discuss in
Appendix 4 and 5 together with the derivation of the corresponding annihilation terms
for directionally anisotropic dislocation arrangements.

Annihilation
Dynamic dislocation annihilation

If dislocation segments of opposite orientation which belong to different dislocation loops
closely approach each other, theymay annihilate. This process leads to amerger of the two
loops. The mechanism that determines the reaction distance is different for dislocations
of near-screw and near-edge orientations:

1 Two near-screw dislocations of opposite sign, gliding on two parallel planes,
annihilate by cross slip of one of them.

2 Two near-edge dislocations annihilate by spontaneous formation and
disintegration of a very narrow unstable dislocation dipole when the attractive
elastic force between two dislocations exceeds the force required for dislocation
climb. As opposed to screw annihilation this process generates interstitial or
vacancy type point defects.

This difference results in different annihilation distances for screw and edge segments.
The dependency of the maximum annihilation distance ya between line segments on
applied stress and dislocation line orientation ϕ is well known (Kusov and Vladimirov
1986; Pauš et al. 2013). For instance, Essmann and Mughrabi (1979) observed that at low
temperatures (smaller than 20% of the melting temperature), the annihilation distance
changes from around 1.5nm for pure edge dislocations to around 50nm for pure screws
in copper. In CCT, dislocations of different orientation can by definition not coexist in the
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averaging volume, which thus is directly acting as the annihilation volume for all disloca-
tions. Hence, it is difficult to account for differences in the annihilation behaviour of edge
and screw dislocations.

Dislocation annihilation in continuum dislocation dynamics

Straight parallel dislocations

Coarse-grained continuum theories that allow for the coexistence of dislocations of dif-
ferent orientations within the same volume element require a different approach to
annihilation. Traditionally this approach has used analogies with kinetic theory where two
‘particles’ react if they meet within a reaction distance ya. Models such as the one pro-
posed by Arsenlis et al. (2004) formulate a similar approach for dislocations by focusing
on encounters of straight lines which annihilate once they meet within a reaction cross-
section (annihilation distance) leading to bi-molecular annihilation terms (Fig. 1 (left)).
However, dislocations are not particles, and in our opinion the problem is better formu-
lated in terms of the addition of dislocation density vectors within an ’reaction volume’
that evolves as dislocations sweep along their glide planes. For didactic reasons we first
consider the well-understood case of annihilation of straight parallel dislocations in these
terms (Fig. 1 (left)). We consider positive dislocations of density vector ρ+ = eaρ+ and
negative dislocations of density vector ρ− = −eaρ−. During each time step dt, each
positive dislocation may undergo reactions with negative dislocations contained within
a differential annihilation volume Va = 4yavsdt where s is the dislocation length, which
for straight dislocations equals the system extension in the dislocation line direction. The
factor 4 stems from the fact that the annihilation cross section is 2Ya, and the relative
velocity 2v. The total annihilation volume in a reference volume �V associated with pos-
itive dislocations is obtained by multiplying this volume with the dislocation numberN+.
The positive dislocation density in�V is ρ+ = N+w/�V where w is the average line seg-
ment length. Hence, the differential annihilation volume fraction (differential annihilation
volume divided by reference volume) for positive dislocations is

f +
a = Va

N+

�V
= 2yavρ+ (18)

Annihilation is now simply tantamount to replacing, within the differential annihila-
tion volume, the instantaneous values of ρ+ and ρ− by their vector sum. This summation
reduces the densities of both positive and negative dislocations by the same amount. The

Fig. 1 Left: Differential annihilation volume of opposite edge dislocations is determined by multiplying their
relative velocity vrel = 2v w.r.t. each other with the line segment length w and the annihilation window 2ycb
and time step δt: Va = 4vyannwdt . Right: Similarly, differential recombination volume of segments with
orientation ϕ and ϕ′ = π + ϕ − 2αl l ′ is determined by multiplying their relative velocity vrel = 2v cos

(
αl l ′

)

w.r.t. the each other with the projected line segment w cos
(
αl l ′

)
which is perpendicular to relative velocity

and the annihilation window 2ycb and time step δt: Va = 4vyann cos2
(
αl l ′

)
wdt
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average density changes in the reference volume �V are obtained by multiplying the
densities with the respective annihilation volume fractions of the opposite ’species’ and
summing over positive and negative dislocations, hence

dρ+

dt
= dρ−

dt
= −(f +ρ− + f −ρ+) = −4yavρ+ρ−. (19)

This result is symmetrical with respect to positive and negative dislocations.

Recombination of non-parallel dislocations

Our argument based on the differential annihilation volume can be straightforwardly
generalized to families of non-parallel dislocations. We first consider the case where the
annihilation distance does not depend on segment orientation. We consider two fam-
ilies of dislocation segments of equal length s, with directions l and l ′ and densities
ρl and ρl ′ . The individual segments are characterized by segment vectors sss = ls and
sss′ = l ′s (for generic curved segments we simply make the transition to differential vectors
dsss = lds and dsss′ = l ′ds). The segments are moving at velocity v perpendicular to their
line direction (Fig. 1 (right)).
The argument then runs in strict analogy to the previous consideration, however, since

the product of the reaction is not zero we speak of a recombination rather than an
annihilation reaction. Furthermore, the differential reaction (recombination) volume is
governed not by the absolute velocity of the dislocations but by the velocity at which either
of the families sweeps over the other. This relative velocity is given by vrel = 2v cosαl l ′

where 2αl l ′ = π − ψ and ψ is the angle between the velocity vectors of both families
(Fig. 1 (right)). The recombination area that each segment sweeps by its relative motion
to the other segment is thus given by Aa = 2v cosαl l ′sdt. The differential recombination
volume is then in analogy to Eq. 18 given by

f lr = 4yav cos2(αl l ′)ρl . (20)

Within this volume fraction we identify for each segment of direction l a segment of
orientation l ′ of equal length s and replace the two segments by their vector sum (in the
previously considered case of opposite segment directions, this sum is zero). Hence, we
reduce, within the differential recombination volume, both densities by equal amounts
and add new segments of orientation l ′′and density ρl ′′s′′ where l ′′ and s′′ fulfil the
relations:

sss′′ = sss + sss′, s′′ = |sss′′|, l ′′ = sss′′

s′′
(21)

We can now write out the rates of dislocation density change due to recombination as

dρl

dt
= dρl ′

dt
= −4yavρlρl ′ cos2(αl l ′),

dρl ′′

dt
= 4yavρlρl ′ cos2(αl l ′)s′′(l , l ′). (22)

For dislocations of opposite line directions, αl l = 0 and s′′ = 0, hence, we recover the
previous expression for annihilation of parallel straight dislocations. For dislocations of
the same line direction, αl l ′ = π/2, s′′ = 2s, and l ′′ = l ′ = l , hence, there is no change in
the dislocation densities.
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Recombination of loops triggered by cross slip

We now generalize our considerations to general non-straight dislocations, i.e., to ensem-
bles of loops.We first observe that the relations for straight non-parallel dislocations hold
locally also for curved dislocations, provided that the dislocation lines do not have sharp
corners. For curved dislocations we characterize the dislocation ensemble in terms of its
DODF of orientation angles, i.e., we write

l = l(ϕ) = (cosϕ, sinϕ) , ρl = ρp(ϕ),

l ′ = l(ϕ′) = (cosϕ′, sinϕ′) , ρl ′ = ρp(ϕ′),
l ′′ = l(ϕ′′) = (cosϕ′′, sinϕ′′) , ρl ′′ = ρp(ϕ′′),

αl l ′ = α(ϕ,ϕ′). (23)

We now first consider the recombination of loops initiated by cross slip of screw disloca-
tion segments. This process is of particular importance because the annihilation distance
ycs for near-screw dislocations is almost two orders of magnitude larger than for other
orientations (Pauš et al. 2013). The recombination process is initiated if two near-screw
segments which are oriented within a small angle ϕa ∈[−�ϕ,�ϕ] from the screw orien-
tations ϕ = 0 and ϕ = π pass within the distance ycs (Fig. 2). Mutual interactions then
cause one of the near-screw segments to cross slip and move on the cross-slip plane until
it annihilates with the other segment. However, it would be erroneous to think that cross
slip only affects the balance of near-screw oriented segments: Cross slip annihilation of
screw segments connects two loops by a pair of segments which continue to move in the
cross-slip plane. We can visualize the geometry of this process by considering the pro-
jection of the resulting configuration on the primary slip plane. Figure 3 (left) depicts the
top view of a situation some time after near-screw segments of two loops moving on par-
allel slip planes have merged by cross slip. As the loops merge, the intersection point A –
which corresponds to a collinear jog in the cross slip plane that connects segments of
direction l(ϕ) and l(ϕ′) in the primary slip planes – moves in the Burgers vector direc-
tion. Hence, the initial cross slip triggers an ongoing recombination of segments of both
loops as the loops continue to expand in the primary slip system (Devincre et al. 2007).
We note that the connecting segments produce slip in the cross-slip plane. The amount

of this slip can be estimated by considering a situation well after the recombination event,
when the resulting loop has approximately spherical shape with radius R. The slipped area
in the primary slip plane is then πR2, and the area in the cross slip plane is, on average,
Rycs/2. Hence, the ratio of the slip amount in the primary and the cross slip plane is of the
order of 2πR/ycs ≈ 2πρ/(ycsq). We will show later in “CDD(0)” section that, for typical

Fig. 2 Dislocation loops in a cross slip configuration. After cross slip annihilation two semi-loops are
connected by collinear jogs moving in Burgers vector direction
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Fig. 3 Top view of a cross slip induced recombination process. Left: cross slip initiates the annihilation of
near-screw segments of two merging dislocation loops. The dashed lines shows the annihilated parts of the
loops. After the initiation of the cross slip, loops continue to merge by interaction between segments
AB(sss(ϕ)) and AC (sss(ϕ′)). Right: Recombination of segments sss(ϕ) and sss(ϕ′) generates a new segment sss(ϕ′′)
with edge orientation which changes the total dislocation density and mean orientation

hardening processes, the amount of slip in the cross slip plane caused by recombination
processes can be safely neglected.
Comparing with Fig. 1 we see that, in case of cross slip induced recombination, the two

recombining segments fulfil the orientation relationship ϕ′ = π − ϕ and that the angle
αl l ′ and the length of the recombined segment are given by

αl l ′ = ϕ, (24)

ϕ′′ = π

2
sign(π − ϕ), (25)

s′′ = |l + l ′| = 2| sinϕ|. (26)

We nowmake an important conceptual step by observing that, if two segments pertain-
ing to different loops in the configuration shown in Fig. 3 are found at distance less than
ycs, then a screw annihilation event must have taken place in the past. Hence, we can infer
from the current configuration that in this case the loops are recombining. The rates for
the process follow from (22) as

dρ(ϕ)

dt
= dρ(ϕ′)

dt
= −4ycsvρ2p(ϕ)p(ϕ′) cos2(ϕ),

dρ(ϕ′′)
dt

= 8ycsvρ2p(ϕ)p(ϕ′) cos2(ϕ)| sinϕ|. (27)

Multiplying (27) with the appropriate power tensors of the line orientation vectors and
integrating over the orientation window where cross slip is possible gives the change of
alignment tensors due to cross slip induced recombination processes:

∂tρ
(k)
cs = −4ycsvρ2

∮ ∮

(�ϕ − |ϕ + ϕ′ − π |) cos2(ϕ)
[
l(k)(ϕ) − |sin(ϕ)| l(k)(π/2)

]
dϕ′dϕ

− 4ycsvρ2
∮ ∮

(�ϕ − |ϕ + ϕ′−3π |) cos2(ϕ)
[
l(k)(ϕ)−|sin(ϕ)| l(k)(3π/2)

]
dϕ′dϕ.

(28)

Here  is Heaviside’s unit step function that equals 1 if its argument is positive or zero,
and zero otherwise. Hence, ϕ′ must be located within �ϕ from π − ϕ if ϕ is less than π ,
and within �ϕ from 3π − ϕ if ϕ is bigger than π .
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Isotropic recombination of general dislocations by climb

Next we consider recombination by climb which we suppose to be possible for dislo-
cations of any orientation that are within a direction-independent cross-section 2ycb of
others. Hence, the process is - unlike cross slip - isotropic in the sense that an initially
isotropic orientation distribution will remain so, and recombination can occur between
segments of any orientation provided they find themselves within a distance of less than
ycb. To analyse this process, we focus on the plane of symmetry that bisects the angle
between both segments. This plane is at an angle θ from the screw dislocation orienta-
tion, see Fig. 4. Now, if we rotate the picture by −θ , it is clear that the geometry of the
process is exactly the same as in case of cross slip induced recombination, and that only
the appropriate substitutions need to be made. The following geometrical relations hold:

θ(ϕ,ϕ′) = ϕ′ + ϕ − π

2
, (29)

α(ϕ,ϕ′) = ϕ − ϕ′ + π

2
, (30)

ϕ′′ = ϕ + ϕ′

2
, (31)

s′′ = 2
∣
∣
∣
∣cos

(
ϕ − ϕ′

2

)∣
∣
∣
∣ . (32)

According to (22) the rate of recombination between segments of directions ϕ and ϕ′

then leads to the following density changes:
dρ(ϕ)

dt
= dρ(ϕ′)

dt
= −4yavρ2p(ϕ)p(ϕ′) sin2

(
ϕ − ϕ′

2

)

,

dρ(ϕ′′)
dt

= 8yavρ2p(ϕ)p(ϕ′) sin2
(

ϕ − ϕ′

2

) ∣
∣
∣
∣cos

(
ϕ − ϕ′

2

)∣
∣
∣
∣ . (33)

Multiplying (33) with the appropriate power tensors of the line orientation vectors
and integrating over all orientations gives the change of alignment tensors due to climb
recombination processes:

∂tρ
(k) = −4ycbvρ2

∮ ∮

p(ϕ)p(ϕ′) sin2
(

ϕ − ϕ′

2

) [

l(k)(ϕ) −
∣
∣
∣
∣cos

(
ϕ − ϕ′

2

)∣
∣
∣
∣ l

(k)
(

ϕ + ϕ′

2

)]

dϕ′dϕ

(34)

Fig. 4 Left: Two dislocation loops are merging by climb annihilation initiated at segments with angles θ and
π + θ . Right: Interaction between segments s(ϕ) and s(ϕ′ = π + 2θ − ϕ) generates a news segment s(ϕ′′)
with orientation perpendicular to θ
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In particular, the rates of change of the lowest-order tensors are

∂tρ = −4ycbvρ2
∮ ∮

p(ϕ)p(ϕ′) sin2
(

ϕ − ϕ′

2

) [

1 −
∣
∣
∣
∣cos

(
ϕ − ϕ′

2

)∣
∣
∣
∣

]

dϕ′dϕ (35)

∂tρ = 0. (36)

The latter identity is immediately evident if one remembers that ρ is the vector sum of
all dislocation density vectors in a volume, hence, it cannot change if any two of these are
added up and replaced with their sum vector.

Dynamic dislocation sources
During early stages of plastic deformation of a well-annealed crystal (ρ ≈ 106[m−2]), the
dislocation density can increase by several orders of magnitude. This increase of disloca-
tion density contributes tomany different phenomena such as work hardening. Therefore,
no dislocation theory is complete without adequate consideration of the multiplication
problem. In CDD, multiplication in the sense of line length increase by loop expansion
occurs automatically because the kinematics of curved lines requires so, however, the gen-
eration of new loops is not accounted for, which leads to an incorrect hardening kinetics.
In this section, we discuss several dynamic mechanisms that increase the loop density by
generating new dislocation loops.
First we introduce the well-known Frank-Read source and how we formulate it in a

continuous sense in the CDD framework. Frank-Read sources are fundamental parts
of the cross-slip and glissile junction multiplication mechanisms which play an impor-
tant role in work hardening. Therefore we use the Frank-Read source analogy to discuss
the kinematic aspects of these mechanisms and the necessary steps for incorporating
them into the CDD theory. We first note that the Mura equation, if applied to a FR
source configuration with sufficiently high spatial resolution to a FR source, captures the
source operation naturally without any further assumptions, as shown by the group of
Acharya (Varadhan et al. 2006). Like the problem of annihilation, the problem of sources
arises in averaged theories where the spatial structure of a source can not be resolved.
To overcome this problem, Hochrainer (2007) proposed a formulation for a continu-
ous FR source distribution in the context of the higher-dimensional CDD. Sandfeld and
Hochrainer (2011) described the operation of a single FR source in the context of lowest-
order CDD theory as a discrete sequence of loop nucleation events. Acharya (2001)
generalizes CCT to add a source term into the Mura equation. This term might rep-
resent the nucleation of dislocation loops of finite area ex nihil which can happen at
stresses close to the theoretical shear strength, or through diffusion processes which
occur on relatively long time scales and lead to prismatic loops (Messerschmidt and
Bartsch 2003; Li 2015). Neither process is relevant for the normal hardening behavior
of metals.

Frank-read sources

Themainmechanism for generation of new dislocation loops in low stress conditions was
first suggested by Frank and Read (1950). Here we propose a phenomenological approach
to incorporate this mechanism into CDD. A Frank-Read source is a dislocation segment
with pinned end points, e.g. by interactions with other defects or by changing to a slip
plane where it is not mobile. Under stresses higher than a critical stress, the segment
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bows out and generates a new dislocation loop and a pinned segment identical to the
initial segment. Therefore, a Frank-Read source can successively generate closed disloca-
tion loops Fig. 5. A Frank-Read source can only emit dislocations when the shear stress is
higher than a critical stress needed to overcome the maximum line tension force (Hirth
and Lothe 1982):

σcr ≈ Gb
rFR

, (37)

where the radius of the metastable loop is half the source length, rFR = L
2 . The acti-

vation rate of Frank-Read sources has been subject of several studies. Steif and Clifton
(1979) found that in typical FCC metals, the multiplication process is controlled by the
activation rate at the source, where the net driving force is minimum due to high line
tension. The nucleation time can be expressed in a universal plot of dimensionless stress
σ ∗ = σL/Gb vs dimensionless time t∗ = tnucσb/BL, where tnuc is the nucleation time
and B is the dislocation viscous drag coefficient. For a typical σ ∗ ≈ 4, the reduced time
becomes t∗ ≈ 10 (Hirth and Lothe 1982). However, this exercise may be somewhat
pointless because the stress at the source cannot be controlled from outside, rather, it is
strongly influenced by local dislocation-dislocation correlations, such as the back stress
from previously emitted loops. Such correlations have actually a self-regulating effect: If
the velocity of dislocationmotion near the source for some reason exceeds the velocity far
away from the source, then the source will emit dislocations rapidly which pile up close
to it and exert a back stress that shuts down the source. Conversely, if the velocity at the
source is reduced, then previously emitted dislocations are convected away and the back
stress decreases, such that source operation accelerates. The bottom line is, the source
will synchronize its activation rate with the motions of dislocations at a distance. In our
kinematic framework which averages over volumes containing many dislocations, it is
thus reasonable to express the activation time in terms of the average dislocation velocity
v = σb/B as:

τ = ηrFR/v. (38)

(38) implies that the activation time is equal to the time that an average dislocation takes
to travel η times the Frank-Read source radius before a new loop can be emitted. In

Fig. 5 Activation of a Frank-Read source: A dislocation segment (black) pinned at both ends bows out under
applied stress and creates a metastable half-loop. If the shear stress acting on the source is higher than a
critical value, this semi-loop expands further and rotates around the pinned ends. The recombination of loop
segments (red) then generates a new complete loop (blue) and restores the original configuration
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discrete dislocation dynamics (DDD) simulations, a common practice for creating the ini-
tial dislocation structure is to consider a fixed number of grown-in Frank-Read sources
distributed over the different slip systems (Motz et al. 2009). Assuming that the length of
these sources is 2rFR and the density of the source dislocations is ρFR, then their volume
density is nFR = ρFR/(2rFR). The activation rate is given by the inverse of the nucleation
time:

νFR = v/(ηrFR). (39)

The operation of Frank-Read sources of volume density nFR increases the curvature
density by 2π times the loop emission rate per unit volume, hence

q̇fr = 2πnFRνFR = πv
ρFR

ηr2FR
. (40)

We note that no corresponding terms enter the slip rates, or the evolution of the
alignment tensors, which are fully described by terms characterizing motion of already
generated dislocations.
Source activity has important consequences for work hardening. The newly created

loops have high curvature of the order of the inverse loop radius, hence they are more effi-
cient in creating line length than old loops that have been expanding for a long time. This
effect of increasing the average curvature of the dislocation microstructure is of major
importance for the work hardening kinetics.

Double-cross-slip sources

Koehler (1952) suggested the double-cross-slip mechanism as a similar mechanism to
a Frank-Read source that can also repeatedly emit dislocation loops. In double-cross-
slip, a screw segment that is gliding on the plane with maximum resolved shear stress
(MRSS) and is blocked by an obstacle cross-slips to a slip plane with lower MRSS. After
passing the obstacle it cross slips back to the original slip system and produces two super
jogs connecting the dislocation lines. These two super-jogs may act as pinning points
for the dislocation and in practice produce Frank-Read like sources (Fig. 6). The double-
cross-slip source is the result of the interaction of dislocations on different slip planes and
therefore a dynamic process.
Several DDD studies such as Hussein et al. (2015) have tried to link the number of

double-cross-slip sources in the bulk and on the boundary of grains to the total dislocation

Fig. 6 A double cross-slipped segment may act as a Frank-Read source on a parallel slip plane
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density. They observed that the number of double-cross-slip sources increases with dislo-
cation density and specimen size. However, these studies fall short of identifying an exact
relation between the activation rate of cross-slip-sources and system parameters.
In the following we introduce a model for incorporating this process into CDD. The

density of screw dislocations ρs on a slip system is:

ρs =
∫ �ϕ

−�ϕ

ρ(ϕ) +
∫ π+�ϕ

π−�ϕ

ρ(ϕ), (41)

which in general is a function of dislocation moments functions. For the case of isotropic
DODF this can be simplified to ρs = 4�ϕ(ρ(ϕ = 0) + ρ(ϕ = π)) = 4�ϕ

2π ρ. We assume
that a fraction fdcs of this density is in the form of double-cross-slipped and pinned seg-
ments. Hence, the source density is ndcs = ρs/rdcs, where the pinning length of the
cross slipped segments is of the order of the dislocation spacing, rdcs = 1/

√
ρtot with

ρtot = ∑
ς ρ. Otherwise we assume for the cross-slip source exactly the same relations

as for the grown-in sources of density ρFR and radius rFR. Thus, the generation rate of
curvature density becomes:

q̇dcs ≈ π
fdcs
η

vρsρtot. (42)

The non-dimensional numbers fdcs and η can be determined by fitting CDD data to an
ensemble average of DDD simulations, or to work hardening data. While in bulk systems
these parameters only depend on the crystal structure and possibly on the distribution of
dislocations over the slip systems, for small systems, fdcs and η are expected to be func-
tions of

√
ρtotls, the system size (e.g. grain size) ls in terms of dislocations spacing, because

the source process may be modified e.g. by image interactions at the surface.

Glissile junctions

When two dislocations gliding on different slip systems (ς ′, ς ′′) intersect, it can be ener-
getically favourable for them to react and form a third segment called junction. Depending
on the Burgers vectors and slip planes of the interacting segments this junction can be
glissile (mobile) or sessile (immobile). Figure 7 depicts the formation of a glissile junc-
tion . The segment (a) on the slip system (b1, n1) interacts with the segment (b) on
the slip system (b2, n2) and together they produce the junction (c) on the slip system
(b3 = b1 + b2, n2) which lies on the same glide plane as the segment (b). This mech-
anism produces a segment on the slip system (b3, n2) with endpoints that can move
and adjust the critical stress to the applied shear stress. Recently Stricker and Weygand

Fig. 7 Glissile junction reproduced from Stricker and Weygand (2015): Two dislocations on slip systems
(b1, n1) and (b2, n2) interact and form a glissile junction acting like a Frank-Read source on slip system (b3, n2)
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(2015) studied the role of glissile junctions in plastic deformation. They found by consid-
ering different dislocation densities, sizes and crystal orientations of samples, that glissile
junctions are one of the major contributors to the total dislocation density and plastic
deformation. The action of glissile junctions can be envisaged in a similar manner as the
action of cross slip sources, however, we need to take into account that only a very limited
number of reactions can produce a glissile junction. Suppose that two dislocations of slip
systems ς ′ and ς ′′ produce a glissile junction that can act as a source on system ς . The
density of segments on ς ′ that form junctions with ς ′′ is fgjρς ′

ρς ′′
/ρtot and the length of

the junctions is of the order of the dislocation spacing, rgj = 1/
√

ρtot. Hence we get

q̇ς
gj ≈

∑

ς ′

∑

ς ′′
π f ς ′ς ′′

gj vς ρς ′
ρς ′′

η
. (43)

We finally note that the action of dynamic sources and recombination processes
is kinematically irreversible. Consequently, by reversing the direction of the velocity,
recombination mechanisms do not act as sources and vice versa.

CDD(0)

CDD(0): a model for early stages of work hardening

We now use the previous considerations to establish a model for the early stages of work
hardening. In doing so we make the simplifying assumption that the ’composition’ of the
dislocation arrangement, i.e. the distribution of dislocations over the different slip sys-
tems, does not change in the course of work hardening. This is essentially correct for
deformation in high-symmetry orientations but not for deformation in single slip con-
ditions. We thus focus on one representative slip system only and assume that all other
densities scale in proportion.
Since the DODF of CDD(0) is uniform

(
ρ(ϕ) = ρ

2π
)
, the climb and cross slip recombi-

nation rates can be combined into one set of equations:

ρ̇ann = −4dannvρ2q̇ann = q
ρ

ρ̇ann (44)

where dann is an effective annihilation distance. Although in DDD simulations, artifi-
cial Frank-Read sources are often used to populate a dislocation system in early stages,
we consider samples with sufficient initial dislocation density where network sources
(glissile junctions) are expected to dominate dislocation multiplication. Therefore, we
only consider glissile junctions in conjunction with loop generation by double-cross-slip
which leads to terms of the same structure. Their contribution can be combined into one
equation:

q̇src = csrc
η

vρ2. (45)

Closing the kinematic Eqs. (10) and (12) at zeroth order together with the contri-
bution of annihilation and sources gives the semi-phenomenological CDD(0) evolution
equations:

∂tρ = qv + ρ̇ann

∂tq = q̇ann + q̇src
∂tγ = ρbv (46)
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For quasi-static loading the sum of internal stresses should balance the applied resolved
shear stress. For homogeneous dislocation microstructure the dominant internal stresses
are a friction like flow stress τf ≈ αbG√

ρ and a self interaction stress associated to line
tension of curved dislocations approximated as τlt ≈ TGb q

ρ
where G denotes the shear

modulus and α and T are non dimensional parameters (Zaiser et al. 2007). Therefore the
applied stress becomes:

τext = τf + τlt = αbG
√

ρ + TGb
q
ρ

(47)

Using these relations we can build a semi-phenomenological model for work hardening.
We fit the parameters of the model to the stage III hardening rate (θ = ∂τ/∂γ ) of high-
purity single crystal Copper during torsion obtained by Göttler (1973). Interestingly, the
model captures also the stages I and II. The initial values andmaterial properties are given
in Table 1.
The initial microstructure consists of a small density of low curvature dislocation loops

which have low flow stress and line tension. This facilitates the free flow of disloca-
tions which is the characteristic of the first stage of work hardening (marked with (I) in
Fig. 8-top-right). The initial growth of dislocation density is associated with expansion
of dislocation loops. In this stage the curvature of microstructure w.r.t. dislocation spac-
ing rapidly increases which indicates that dislocations become more and more entangled.
This can be parametrized by the variable� = q/(ρ)1.5 as depicted by Fig. 8-bottom-right.
As density increases, the dynamic sources become more prominent. New dislocation
loops are generated and the curvature of the system increases. In the second stage,
the hardening rate ∂τ/∂γ reaches its maximum around τ = G/120. The growth rate
of dislocation density decreases which indicates the start of dynamic recovery through
recombination of dislocations. In the third stage, the hardening rate decreases mono-
tonically as dislocation density saturates. The late stages of hardening (IV, V) exhibit
themselves as a plateau at the end of the hardening rate plot and are commonly associated
with dislocation cell formation. Therefore CDD(0) cannot capture these stages. To capture
these stages, one might need to use higher order non local models such as CDD(1) and
CDD(2) which are cable of accounting for dislocation transport and capture cell formation
(Sandfeld and Zaiser 2015).
In our treatment we have neglected the slip contribution of segments that move on

the cross slip plane during cross-slip induced recombination processes. We are now in
a position to estimate this contribution, which we showed to be of the order of fcs ≈
qycs/(2πρ) relative to the amount of slip on the primary slip plane. An upper estimate of
the cross slip height ycs leading to a recombination process is provided by the dislocation

Table 1Material properties, initial values of dislocation densities of Copper

G 48[GPa] b 0.256[nm]

α 0.27 T 0.3

ρ 2 × 10−12
[
m−2

]
q 2.86 × 1016

[
m−3

]

dann 38 × b

csrc 0.032 η 3.92
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Fig. 8 First 3 stages of work hardening in cooper rolling. Experimental measures marked by [×] obtained
from Göttler (1973). Top-left: resolved shear stress(RSS) against plastic slip. Top-right: hardening-rate vs RSS;
Hardening rate of experimental measures are obtained by fitting a 6th-order polynomial to stress-strain
curve. Bottom-left: log-log plot of dislocation density vs RSS; This plot shows that dislocation density
eventually saturates as the RSS can not increase any more. Bottom-right: Dislocation-entanglement(
� = q/ρ1.5

)
vs plastic slip

spacing. Hence, fcs ≈ �/(2π) ≤ 0.013 at all strains considered. We conclude that in
standard work hardening processes this contribution is negligible.

Summary and conclusion
We revisited the continuum dislocation dynamics (CDD) theory which describes con-
servative motion of dislocations in terms of series of hierarchical evolution equations of
dislocation alignment tensors. Unlike theories based on the Kröner-Nye tensor which
measures the excess dislocation density, in CDD, dislocations of different orientation
can coexist within an elementary volume. Due to this fundamental difference, in CDD,
dislocations interactions should be dealt with a different approach than in GND-based
theories. We introduced models for climb and cross-slip annihilation mechanisms. The
annihilation rates of alignment tensors for the first and the second order CDD theories
CDD(1) and CDD(2) were calculated in Appendix 2 and 3. Later we discussed models
for incorporating the activation of Frank-Read, double cross slip and glissile junction
sources into CDD theory. Due to the dynamic nature of source mechanisms, ensembles
of DDD simulations are needed to characterize the correlation matrices which emerge
in the continuum formulation of these mechanisms. We outline the structure of the
first and second order CDD theories with annihilation and sources in Appendix 4 and 5
respectively. We finally demonstrated that by including annihilation and generation
mechanism in CDD theory, even zeroth-order CDD theory

(
CDD(0)

)
obtained by

truncating the evolution equations at scalar level, can describe the first 3 stages of
work hardening.
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Appendix 1
Approximating the DODF usingmaximum information entropy principle

Monavari et al. (2016) proposed using the Maximum Information Entropy Princi-
ple (MIEP) to derive closure approximations for infinite hierarchy of CDD evolution
equations. The fundamental idea is to estimate the DODF based upon the information
contained in alignment tensors up to order k, and then use the estimated DODF to eval-
uate, from Eq. (2), the missing alignment tensor ρ(k+1). By using the method of Lagrange
multipliers, we can construct a DODF which has maximum information entropy and is
consistent with the known alignment tensors. The CDD theory constructed by using this
DODF to estimate ρ(k+1) and thus obtain a closed set of equations is called the k-th order
CDD theory

(
CDD(k)

)
. We can reduce the number of unknowns by assuming that the

reconstructed DODF is symmetric around GND direction ϕρ = tan−1
(
l2
l1

)
and rotate

the coordinates such that the GND vector becomes parallel to x direction. In this case the
DODF takes the form:

p(ϕ) = 1
Z
exp

⎡

⎣−
k∑

i=1
λi cosi(ϕ − ϕρ)

⎤

⎦ (48)

where the partition function of the distributions is:

Z =
∮

exp
(

−
n∑

i=1
λi cosi(ϕ − ϕρ)

)

dϕ, (49)

and λi are the Lagrangian multipliers which are functions of known alignment tensors.
We obtain the DODF of CDD(1) and CDD(2) by truncating the (48) at the first and the
second order respectively:

CDD(1) : p(ϕ) = 1
Z
exp(−λ1 cos(ϕ − ϕρ)) (50)

CDD(2) : p(ϕ) = 1
Z
exp

(−λ1 cos(ϕ − ϕρ) − λ2 cos2(ϕ − ϕρ)
)

(51)

The Lagrangian multipliers can be expressed as functions of dislocation momentsM(k)

which we define as the first components of the alignment tensors in the rotated coor-
dinates: M(k) := ρ

′(k)
1...1 = ρ

(k)
1...1(ϕ − ϕρ). For instance, the first moment is the ratio of

GND density to total density and the second moment describes the average distribution
of density w.r.t GND:

M(1) = |ρ|/ρ, (52)

M(2) =
(
ρ

(2)
11 l1l1 + 2ρ(2)

12 l1l2 + ρ
(2)
22 l2l2

)
/ρ. (53)

The alignment tensor series can also be expressed in terms of moments functions:

ρ/ρ = M(1) (54)

ρ(2)/ρ = M(2)lρ ⊗ lρ +
(
1 − M(2)

)
lρ⊥ ⊗ lρ⊥, . . . (55)

The higher order moment functions and consequently the alignment tensors can be
estimated using the reconstructed DODF.
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Appendix 2
Climb annihilation in CDD(1) and CDD(2)

In order to find the climb annihilation rate of the the alignment tensors in CDD(1) and
CDD(2) first we find the annihilation rate of the moment functions:

ρ̇
′(k)
1...1|cb = −4ycbvρρf (k)

cb (λ1,ϕρ), (56)

where ρ
′(k)
1...1 = ρM(k) is the first component of the k-th order alignment tensor in the

rotated coordinate system. f (k)
cb is the climb annihilation function of order k:

f (k)
cb =

∮

p(ϕ)

[∫ ϕ+ π
2

ϕ− π
2

p(π + 2θ − ϕ) cos2(ϕ − θ)

(

cosk(ϕ) − |sss′′|
2

(l ′′1)k
)

dθ
]

dϕ (57)

=
∮

p(ϕ)

[∫ ϕ+ π
2

ϕ− π
2

p(π + 2θ − ϕ) cos2(ϕ − θ)

(

cosk(ϕ) − (sss′′
1)

k

2(|sss′′|)k−1

)

dθ
]

dϕ (58)

ρ̇
(k)
cb = −4ycbvρ2

∮ ∮

(�ϕ − |ϕ + ϕ′ − π |) cos2(ϕ)
[
l(k)(ϕ) − |sin(ϕ)| l(k)(π/2)

]
dϕ′dϕ

− 4ycbvρ2
∮ ∮

(�ϕ−|ϕ + ϕ′ − 3π |) cos2(ϕ)
[
l(k)(ϕ)−|sin(ϕ)| l(k)(3π/2)

]
dϕ′dϕ.

(59)

Using these relation we obtain the annihilation rate of ρ as:

ρ̇cb = −4ycbvρρf (0)
cb (λ1,ϕρ), (60)

where f (0)
cb (λ1,ϕρ) is the zeroth-order climb annihilation function defined as:

f (0)
cb (λ1,ϕρ) = 1

Z2

∮

exp(−λ1 cos(ϕ − ϕρ)) (61)

×
[∫ ϕ+ π

2

ϕ− π
2

exp(−λ1 cos(π + 2θ−ϕ−ϕρ)) cos2(ϕ−θ)

(

1 − |sss′′|
2

)

dθ
]

dϕ.

Given that the DODF of CDD(1) is symmetric around the GND angle ϕρ , f (0)
cb can be

derived as a function of the only Lagrangian multiplier λ1. It is more physically intuitive
to express this rate as a function of the corresponding first dislocation moment M(1) =
|ρ|/ρ, which can be understood as the GND fraction of the total dislocation density. As
depicted in Fig. 9, f (0)

cb does not correspond to the parabolic rate expected by bimolecular
annihilation of straight dislocation lines. The annihilation of ρ can be approximated by:

ρ̇cb = −1.2ycbvρρ

(

1 − 1.5
(
M(1)

)2 + 0.5
(
M(1)

)6
)

. (62)

Similar to the CDD(1), the annihilation rate of the first three moment function of
CDD(2) can be calculated using its DODF:

ρ̇|cb = 4ycbvρρf (0)
cb

(
M(1),M(2)

)
, (63)

ρ̇
′(1)
1

∣
∣
∣
cb

= 4ycbvρf (1)
cb

(
M(1),M(2)

)
= 0, (64)

ρ̇
′(2)
11

∣
∣
∣
cb

= 4ycbvρf (2)
cb

(
M(1),M(2)

)
. (65)

Note that the first order annihilation function is always zero by definition
(
f (1)
cb = 0

)
.

Figure 10 depicts the zeroth and second order annihilation functions and their analytical
approximation as functions ofM(1) andM(2):
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Fig. 9 Blue line: climb annihilation function of ρ as a function of the GND fraction. Green dashed-line:
analytical fit (0.3(1 − 1.5x2 + 0.5x6)) to the annihilation rate. Red line: parabolic rate

(
0.5

(
1 − x2

))
predicted

by bimolecular annihilation

f (0)
cb

(
M(1),M(2)

)
≈

(

0.8
(
M(2) − .5

)2 + 0.3
) (

1 −
(
M(1)

)2
)

, (66)

f (2)
cb

(
M(1),M(2)

)
≈ 0.5M(2)

(

1 −
(
M(1)

)2
)

. (67)

In the limit case ofM(2) = 1, where dislocations become parallel straight lines, annihi-
lation functions converge to parabolic bi-molecular annihilation. The annihilation rate of
ρ(2) can be evaluated using the relation betweenmoment functions and alignment tensors
given by Monavari et al. (2016):

Fig. 10 Left column: the Zeroth and the second order annihilation functions as functions ofM(1) andM(2) .
Center column: polynomial approximations of the annihilation functions. Right column: absolute errors of
the approximations
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ρ̇
(2)
cb = ρ̇

′(2)
11 |cblρ ⊗ lρ +

(
ρ̇cb − ρ̇

′(2)
11 |cb

)
lρ⊥ ⊗ lρ⊥ (68)

= −4ycbvρρ
[
f (2)
cb lρ ⊗ lρ +

(
f (0)
cb − f (2)

cb

)
lρ⊥ ⊗ lρ⊥]

.

Assuming an equi-convex microstructure where all dislocations have the same (mean)
curvature, the annihilation rate of the total curvature density can be straightforwardly
evaluated from the dislocation density annihilation rate:

q̇cb = ρ̇cb
q
ρ
. (69)

The concomitant reduction in dislocation curvature density decreases the elongation
(source) term vq in the evolution equation of the total dislocation density (10) – an effect
which has an important long-term impact on the evolution of the dislocation microstruc-
ture and may outweigh the direct effect of annihilation. The total annihilation rate is the
sum of annihilation by cross slip and climb mechanisms.

Appendix 3
Cross slip annihilation in CDD(1) and CDD(2)

Cross slip annihilation in CDD(1)

The cross slip annihilation rate of DODF in CDD(1) can be calculated by plugging the
DODF of CDD(1) given by (50) into (28). Assuming that the dislocations have a smooth
angular distribution which can be approximated as constant over the small angle interval
2�ϕ, (28) can be further simplified:

ρ̇cs(ϕ) = −8�ϕycsvρ(ϕ)ρ(π − ϕ) cos2(ϕ)(1 − | sin(ϕ)|)
= −8�ϕycsv

ρρ

Z2 exp(−λ1 cos(ϕ − ϕρ) − λ1 cos(π − (ϕ − ϕρ))) cos2(ϕ)(1 − | sin(ϕ)|)
(70)

The annihilation rate of the zeroth order alignment tensor (total dislocation density) is
given by integrating (70) over all orientations:

ρ̇cs = −8�ϕycsvρρ
1
Z2

∮

exp(−λ1 cos(ϕ − ϕρ) − λ1 cos(π − (ϕ − ϕρ))) cos2(ϕ)(1 − | sin(ϕ)|)dϕ
= −8�ϕvycsρρf 0cs.

(71)

f 0cs is a function of the symmetry angle of DODF ϕρ and the Lagrangian multiplier λ1
or the corresponding M(1). We are especially interested in limit cases where the DODF
is symmetric around the screw orientation and edge orientation which correspond to
the axes of Fig. 12 (right). In the first case the GND vector is aligned with the screw
orientations ϕρ = 0 and ϕρ = π such that ρ(ϕ) = ρ(−ϕ) and M(1) = ρ1/ρ. Hence (71)
becomes:

ρ̇cs = −4ycsv(ρ)2
2�ϕ

Z2

[∮

cos2(ϕ)(1 − | sin(ϕ)|)dϕ
]

ycsv

= −4ycsv(ρ)2
2�ϕ

Z2

(

π − 4
3

)

, (72)

where Z2 is a function of the first momentM(1).
The second case corresponds to a microstructure where ρ(ϕ) = ρ(π − ϕ). Using this

symmetry property and the DODF given by (50), the rate of reduction in total dislocation
density in CDD(1) can be evaluated as
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Fig. 11 Normalized annihilation rate as a function of the GND fractionM(1) for a dislocation annihilation
triggered by cross slip. Blue line: normalized annihilation rate for a DODF symmetric around screw orientation
(ϕρ = 0,π ). Red line: normalized annihilation rate for a DODF symmetric around edge orientation(
ϕρ = π

2 ,
3π
2

)
. Dashed lines: Parabolic annihilation rate expected from the kinetic theory

ρ̇cs = −4ycsv(ρ)2
2�ϕ

Z2

[∮

exp(−2λ1 sin(ϕ)) cos2(ϕ)(1 − | sin(ϕ)|)dϕ
]

. (73)

For a completely isotropic dislocation arrangement, λ1 = 0 and Z = 2π , we obtain in
both cases:

ρ̇cs = −4ycsv(ρ)2
(
2�ϕ

4π2

) (

π − 4
3

)

. (74)

Figure 11 compares these two limit cases with the parabolic dependency expected
according to kinetic theory for a system of straight parallel dislocations (dashed red line).
In general, the annihilation rate can be approximated by interpolating between these two
cases. Figure 12 shows the annihilation rate, normalized by the value at M(1) = 0, as a
function of the GND fraction M(1) and the GND angle ϕρ or the corresponding screw
and edge components of the normalized GND vector ρ/ρ. We can see that the annihi-
lation rate decreases monotonically with increasing GND fraction and goes to zero if all
dislocations are GND.

Fig. 12 Left: cross slip annihilation function fann of total dislocation density in CDD(1) plotted in polar
coordinates with the first dislocation momentM(1) as distance to the origin and the GND angle ϕρ . The
equivalent Cartesian coordinates are the screw and edge components of the normalized GND vector

ρ̂(1) = ρ/ρ . Middle: analytical approximation of the annihilation rate fcs = (ρ̂1)
2 cos2

(
π |ρ|
2ρ

)
+ (ρ̂2)

2

(

1 −
( |ρ|

ρ

)2
)

. Right: the absolute error of the approximation
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Assuming an equi-convex microstructure, the annihilation rate of curvature density
becomes:

q̇cs = ρ̇cs
q
ρ
. (75)

Cross slip annihilation in CDD(2)

The cross slip annihilation rate of the second order alignment tensors in CDD(2) can
be calculated by plugging the corresponding DODF into (28). Assuming the symmetric
DODF given by (51) the annihilation rate of ρ(2) takes the form of:

ρ̇(2)
cs = −4vycsρρ f (2)

cs (λ1, λ2,ϕρ) (76)

where f (2)
cs is a symmetric second order tensorial function of the symmetry angle ϕρ and

the Lagrangianmultipliers λ1 and λ2 (or their corresponding first twomoment functions).
Each component of f (2)

cs can be approximated by 3 dimensional tables (or 4 dimensional
in case of full DODF). Figures 13 and 14 depict two slice of the 3D annihilation tables
of ρ and ρ(2) which correspond to symmetric DODFs around screw (ϕρ = 0) and edge
(
ϕρ = π

2
)
orientations respectively. For the corresponding orientation interval we use the

value �ϕ = ±15◦ given by Hussein et al. (2015).
Figure 13 shows that, in the limiting cases where all dislocations are screw oriented, i.e.

M(2) = 1 and ρ(ϕ) = ρ+δ(ϕ) + ρ−δ(π − ϕ), the annihilation rate follows as

ρ̇+|cs = ρ̇−|cs = −4ρ+ρ−ycsv, (77)

which is the result expected by kinetic theory for particles moving in a 2D space with
velocity v in opposite directions and annihilating if they pass within a reaction cross-
section 2ycs.

Appendix 4
Evolution equations of CDD(1)

The total dislocation density ρ, the dislocation density vector ρ, and the total curvature
density q are the kinematic variables of CDD(1). In order to reconstruct the DODF and
approximate ρ(2), first we have to calculate the average line direction lρ , the symmetry
angle ϕρ and the first moment functionM(1):

Fig. 13 Cross slip annihilation functions of ρ , ρ(2)
11 and ρ

(2)
22 in CDD(2) for a DODF symmetric around screw

orientation (ϕρ = 0). For this symmetry angleM(1) = ρ1/ρ andM(2) = ρ11/ρ . Bimolecular annihilation
corresponds to the upper limit ofM(2) = 1
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Fig. 14 Cross slip annihilation functions of ρ , ρ(2)
11 and ρ

(2)
22 in CDD(2) for a DODF symmetric around edge

orientation (ϕρ = π
2 ). For this symmetry angleM(1) = ρ2/ρ andM(2) = ρ22/ρ

lρ = ρ/|ρ| =[l1, l2]=[cos(ϕρ), sin(ϕρ)] , (78)

ϕρ = tan−1
(
l2
l1

)

, (79)

M(1) = |ρ|/ρ. (80)

We also remind that operator (̂•) normalizes quantities with ρ; e.g. ρ̂1 = ρ
(1)
1
ρ
.

M(2) and ρ(2) can be approximated as (Monavari et al. 2016):

M(2) ≈
[

2 +
(
M(1)

)2 +
(
M(1)

)6
]

/4. (81)

ρ(2) ≈ ρ
[
M(2)lρ ⊗ lρ +

(
1 − M(2)

)
lρ⊥ ⊗ lρ⊥]

= ρ

[

M(2)
[
l12 l1l2
l1l2 l22

]

+
(
1 − M(2)

)
[

l22 −l1l2
−l1l2 l12

]]

.
(82)

The curvature density vector is approximated using the equi-convex assumption:

Q(1) = −(ρ)⊥ q
ρ
. (83)

The cross slip annihilation rate of ρ is a function of M(1), lρ and cross slip distance
ycs (71):

ρ̇cs = −vycsρρf 0cs
(
1
6

− 4
3π

)

, (84)

where fcs = (ρ̂1)2 cos2
(

π |ρ|
2ρ

)
+ (ρ̂2)2

(

1 −
( |ρ|

ρ

)2
)

. The climb annihilation rate of ρ is a

function ofM(1) and climb distance ycs:

ρ̇cb = −4ycbvρρfcb, (85)

with fcb ≈ 0.3
(
1 − 1.5

(
M(1))2 + 0.5

(
M(1))6

)
. The curvature generation rates attributed

to the activation of Frank-Read sources, cross slip sources, and glissile junctions are

q̇fr = 2π
5
vρ2

FR, (86)

q̇dcs = π
fdcs
η

vρsρtot , (87)

q̇gj =
∑

ς ′

∑

ς ′′
π f ς ′ς ′′

gj v
ρς ′

ρς ′′

η
, (88)
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where ρfr is the density of the dislocation segments acting as static Frank-Read sources,
fdcs and fgj are a correlation matrices that relate the dislocation densities to activation of
cross slip sources and glissile junctions on the considered slip system. Like the cross slip
annihilation rate, the screw dislocation density ρs is a function of ρ and ρ and can be
estimated as depicted in Fig. 15 by:

ρs ≈ 1
6

+ 5
6

(
(ρ1)2 + (ρ2)2

)
(
1.1(ρ̂1)6 − 1.4(ρ̂1)8 + 1.3(ρ̂1)14 − .16(ρ̂2)4 − .22(ρ̂2)6 + .18(ρ̂2)8

)
.

(89)

The total annihilation and source rates of ρ and q then become:

ρ̇ann = ρ̇cs + ρ̇cb, (90)

q̇ann = q
ρ

ρ̇ann, (91)

q̇src = q̇fr + q̇dcs + q̇gj, (92)

We note that source activation and annihilation do not change the GND vector ρ. The
evolution equations for ρ, ρ, and q then take the form:

ρ̇ = ∇ · (vε · ρ) + vq + ρ̇ann, (93)

ρ̇(1) = −ε · ∇(ρv), (94)

q̇ = ∇ ·
(
vQ(1) − ρ(2) · ∇v

)
+ q̇src + q̇ann, (95)

γ̇ = ρvb (96)

The only missing parameters of this system of equations are the correlation matrices.

Appendix 5
Evolution equations of CDD(2)

CDD(2) is constructed by following the evolution of ρ(2) in addition to ρ and q. Similar
to CDD(1), first we calculate the average line direction lρ , the symmetry angle ϕρ and the
first two moment functionM(1) andM(2):

Fig. 15 Ratio of screw dislocation density ρs/ρ as a function of GND vector and total dislocation density. Left:
Evaluated from integrating the DODF of CDD(1) using (41); Middle: Analytical approximation of screw density
ratio given by (89); Right: the absolute error of the estimation
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lρ = ρ/|ρ| = [l1, l2]= [cos(ϕρ), sin(ϕρ)] , (97)

ϕρ = tan−1
(
l2
l1

)

, (98)

M(1) = |ρ|/ρ, (99)

M(2) =
(
ρ

(2)
11 l1l1 + 2ρ(2)

12 l1l2 + ρ
(2)
22 l2l2

)
/ρ. (100)

ρ(3) is then given by approximated as:

ρ(3)/ρ =M(3)lρ ⊗ lρ ⊗ lρ (101)

+
(
M(1) − M(3)

) (
lρ ⊗ lρ⊥ ⊗ lρ⊥ + lρ⊥ ⊗ lρ ⊗ lρ⊥ + lρ⊥ ⊗ lρ⊥ ⊗ lρ

)
,

where the third order moment functionM(3) is approximated asM(3) ≈ M(1)
√
M(2). The

curvature density vector is given by the divergence of ρ(2):

Q = ∇ · ρ(2). (102)

The second order auxiliary curvature density becomes:

Q(2) = q
2|Q|2

[
(1 + �)Q ⊗ Q + (1 − �)Q⊥ ⊗ Q⊥]

, (103)

where � ≈ (|Q|/q)2 (
1 + (|Q|/q)4) /2.

Equation (76) gives the cross slip annihilation rate of ρ(2):

ρ̇(2)
cs = −4vycsρρ f (2)

cs (λ1, λ2,ϕρ), (104)

where f cs is a tensorial function of M(1), M(2) and lρ and can be tabulated numerically.
The climb annihilation rate of ρ(2) is given by (68):

ρ̇
(2)
cb = −4ycbvρρ

[
f (2)
cb lρ ⊗ lρ +

(
f (0)
cb − f (2)

cb

)
lρ⊥ ⊗ lρ⊥]

, (105)

where the zeroth and the second order climb annihilation functions are approximated as:

f (0)
cb

(
M(1),M(2)

)
≈

(

0.8
(
M(2) − .5

)2 + 0.3
) (

1 −
(
M(1)

)2
)

, (106)

f (2)
cb

(
M(1),M(2)

)
≈ 0.5M(2)

(

1 −
(
M(1)

)2
)

. (107)

Total annihilation rate of ρ(2) is given by the summation of the cross slip and the climb
annihilation rates ρ̇

(2)
ann = ρ̇

(2)
cs + ρ̇

(2)
cb .

In CDD(2), density of screw dislocations can be approximated as ρs ≈ ρ11. Similar to
CDD(1), the contribution of dynamic sources to q can be calculated from (92).
The evolution equations for ρ, ρ(2) and q then take the form:

ρ̇(1) = −ε · ∇(ρv) (108)

ρ̇(2) =
[
−ε · ∇(vρ) + vQ(2) − ε · ρ(3) · ∇v

]

sym
+ ρ̇(2)

ann, (109)

q̇ = ∇ ·
(
vQ(1) − ρ(2) · ∇v

)
+ q̇src + q̇ann, (110)

γ̇ = Tr
(
ρ(2)

)
vb (111)
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