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Abstract

A formal asymptotic analysis of two classes of phase field models for void growth
and coarsening in irradiated solids has been performed to assess their sharp-interface
kinetics. It was found that the sharp interface limit of type B models, which include
only point defect concentrations as order parameters governed by Cahn-Hilliard
equations, captures diffusion-controlled kinetics. It was also found that a type B
model reduces to a generalized one-sided classical Stefan problem in the case of a
high driving thermodynamic force associated with the void growth stage, while it
reduces to a generalized one-sided Mullins-Sekerka problem when the driving force
is low in the case of void coarsening. The latter case corresponds to the famous rate
theory description of void growth. Type C models, which include point defect
concentrations and a non-conserved order parameter to distinguish between the
void and solid phases and employ coupled Cahn-Hilliard and Allen-Cahn equations,
are shown to represent mixed diffusion and interfacial kinetics. In particular, the
Allen-Cahn equation of model C reduces to an interfacial constitutive law
representing the attachment and emission kinetics of point defects at the void
surface. In the limit of a high driving force associated with the void growth stage, a
type C model reduces to a generalized one-sided Stefan problem with kinetic drag.
In the limit of low driving forces characterizing the void coarsening stage, however,
the model reduces to a generalized one-sided Mullins-Sekerka problem with kinetic
drag. The analysis presented here paves the way for constructing quantitative phase
field models for the irradiation-driven nucleation and growth of voids in crystalline
solids by matching these models to a recently developed sharp interface theory.
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Introduction
Irradiation drives complex microstructure evolution in solids by producing large non-

equilibrium densities of point defects (Olander, 1976; Was, 2017; Brailsford &

Bullough, 1972). Features such as dislocation loops and voids are often observed in ir-

radiated solids. The presence of voids, the microstructure type of interest here,

strongly affects the thermal and mechanical properties of irradiated materials. As such,

many investigations were conducted to understand the void formation and growth

processes (Olander, 1976; Was, 2017; Brailsford & Bullough, 1972; Krishan, 1982;

Dubinko et al., 1989; El-Azab et al., 2014; Hochrainer & El-Azab, 2015; Millet &

Materials Theory
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Tonks, 2011a). In analogy to the theory of sintering (Lifshitz & Slyozov, 1961; Raha-

man, 2003), theoretical models of void formation and growth usually treat voids as a

second phase of vacancies that nucleate in a metastable supersaturated solid matrix

with the metastability sustained by the production and accumulation of point defects.

These models thus consider the process as an example of non-equilibrium first-order

phase transition in driven systems. The nucleation models predict a nucleation barrier

for the void formation that decreases as the supersaturation of vacancies (interstitials)

increases (decreases) (Olander, 1976; Was, 2017; Katz & Wiedersich, 1971; Russell,

1971; Mayer & Brown, 1980). The void growth models can be classified into two types;

the rate theory models (Olander, 1976; Was, 2017; Brailsford & Bullough, 1972;

Krishan, 1982; Dubinko et al., 1989) and the field-theoretic, spatiotemporal models (El-

Azab et al., 2014; Hochrainer & El-Azab, 2015; Millet & Tonks, 2011a). In the former,

a test void in an effective homogeneous medium is considered to represent the average

kinetics of the system. Moreover, the process of void evolution is treated as diffusion-

controlled, and the void growth equation is usually derived assuming quasistatic diffu-

sion in the solid matrix (Olander, 1976; Was, 2017; Brailsford & Bullough, 1972;

Krishan, 1982; Dubinko et al., 1989). Some rate theory models known as cluster dy-

namics models take into consideration the size distribution of the evolving void system

(Was, 2017). These models will not be mentioned further in the current discussion. In

field theoretic models, local balance equations and void growth are treated within the

principles of irreversible thermodynamics and the system of voids is resolved in space

and time (De Groot & Mazur, 1962).

The field-theoretic models can be further classified into two categories, sharp- and

diffuse-interface models. In a sharp-interface model developed recently by Hochrainer

and El-Azab (2014; 2015), the void surface is treated as a singular surface across which

jump conditions are applied. The diffuse-interface models, also called the phase field

models, consider the void surface to be diffuse, i.e., has a finite width, in order to cir-

cumvent the numerical difficulties associated with solving the moving boundary prob-

lem of evolving voids (El-Azab et al., 2014; Hochrainer & El-Azab, 2015). However, the

void surface is atomically-sharp and hence one must ensure that diffuse-interface

models recover the sharp-interface description as the interface thickness vanishes. As

of now, two different classes of phase field models for void growth have appeared in lit-

erature (Yu & Lu, 2005; Hu et al., 2009; Hu & Henager, 2009; Hu & Henager, 2010; Li

et al., 2010; Semenov & Woo, 2012; Rokkam et al., 2009; Millett et al., 2009; Millett et

al., 2011c; Millett et al., 2011b; Li et al., 2013; Xiao et al., 2013). Following the termin-

ology of the field-theoretic approach set by physicists for modeling heterogeneous ma-

terials (Hohenberg & Halperin, 1977; Binder, 1987; Provatas & Elder, 2010), these

models are conveniently classified as models of type B and type C. Such models, while

intended to represent one and the same phenomenon, void nucleation and growth, do

appear physically and mathematically different. Therefore, an assessment of these phase

field models showing their relations to the sharp-interface physics and the classical rate

theory models is desirable for making further progress.

The method of matched asymptotic expansions (Provatas & Elder, 2010; Pego, 1989;

Dai & Du, 2012; Elder et al., 2001; Fife, 1992; Emmerich, 2008; Garcke et al., 2004;

Ahmed et al., 2016; Caginalp, 1989) is used here to deduce the sharp-interface limits of

type B and type C phase field models for void evolution in irradiated solids. The
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asymptotic analysis serves two purposes: it demonstrates the consistency of the phase

field models in terms of their physics content, and, in the process, it helps to relate

their parameters to the regular thermodynamic and kinetic parameters that appear in

the sharp-interface models. This is critical for making the phase field models quantita-

tive. The asymptotic analyses performed here can be considered as generalizations of

those by Pego (1989), Dai and Du (2012), and Elder et al. (2001) to the case of driven

multi-component systems.

Our analysis concludes that phase field models of type B, which utilize the point de-

fect concentrations as the only order parameters, can describe diffusion-controlled kin-

etics. Moreover, in the low driving forces limit (coarsening stage) they are equivalent to

the rate theory models. On the other hand, phase field models of type C, which couple

Cahn-Hilliard type equations (Cahn, 1961) for the local balance of point defects with

an Allen-Cahn equation (Allen & Cahn, 1979) for the motion of the void surface, are

able to take into account the attachment kinetics of point defects to the void surface.

The attachment kinetics of the point defects to the void surface affects the overall void

growth rate, as was shown in the numerical simulations of the sharp-interface model

(El-Azab et al., 2014; Hochrainer & El-Azab, 2015). It is shown that the additional

time-dependent Allen-Cahn (Ginzburg-Landau) equation in model C acts as the inter-

facial constitutive law that ensures positive interfacial entropy production associated

with the surface motion due to its reactions with point defects (El-Azab et al., 2014;

Hochrainer & El-Azab, 2015). The connections between the coarsening limits of phase

field models B and C and the classical mean-field Lifshitz-Slyozov-Wagner theories of

Ostwald ripening are further addressed here (Lifshitz & Slyozov, 1961; Rahaman, 2003;

Mullins & Sekerka, 1963; Niethammer, 2000; Dai et al., 2010). These limits are all im-

portant in fixing the phase field model parameters and understanding their results.

The theoretical models of void growth in irradiated solids are reviewed first. The

asymptotic analysis of the different phase field models for void growth is then pre-

sented, followed by a summary and concluding remarks.

Models for void growth in irradiated solids
Rate theory description

Rate theory assumes uniform background concentrations of point defects and sinks in

the solid matrix in which an average void is immersed. The void growth process is

viewed as a diffusion-controlled process. A typical rate theory model consists of three

coupled ordinary differential equations (Eqs. (1.1) and (1.2)), the first two of which rep-

resent the balance of point defect concentrations and the third is the diffusion-

controlled void growth equation (Olander, 1976; Was, 2017; Brailsford & Bullough,

1972; Krishan, 1982; Dubinko et al., 1989),

_cv ¼ Pv−kvicvci−kvscvcs; _ci ¼ Pi−kvicvci−k iscics; ð1:1Þ
_R ¼ Dv cv−cRv

� �
−Di ci−cRi

� �� �
=R; ð1:2Þ

cRv ¼ ceqv exp 2γΩ=RkTð Þ; cRi ¼ ceqi exp −2γΩ=RkTð Þ: ð1:3Þ

In the above, cv and ci are the average (fractional) vacancy and interstitial concentra-

tions in the solid, with the superposed dot referring to their time rates of change, Pv and

Pi are the respective production terms, kvi is a rate constant for vacancy-interstitial
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recombination, kvs and kis are the rate constants for defects reaction with sinks of aver-

age concentration cs, R is the void radius, Ω is the atomic volume, γ is the surface en-

ergy, cRv and cRi are vacancy and interstitial concentrations in equilibrium with a void of

radius R, ceqv and ceqi are the equilibrium vacancy and interstitial concentrations with a

flat surface, and Dv and Di are the diffusion coefficients of vacancies and interstitials,

respectively and k and T are Boltzman constant and temperature. The rate theory has

two major shortcomings. The first is the treatment of the solid as a homogeneous

medium. Under irradiation, high gradients of point defect concentrations exist in the

solid matrix, particularly near the surfaces of sinks such as free surfaces (or voids),

grain boundaries, and dislocations. Describing such an effective homogeneous medium

is complicated and never exact. The second shortcoming pertains to the assumption of

diffusion-controlled growth (Eq. (1.2)). The process of void growth is not necessarily

diffusion-controlled, and the point defect concentrations at the void surface usually de-

viate from their equilibrium values (Eq. (1.3)). In fact, as was recently shown by

Hochrainer and El-Azab (2014; 2015), the overall growth kinetics depends on the inter-

action between the point defects and the void surface.

Sharp-interface description

Spatiotemporal models of void evolution (El-Azab et al., 2014; Hochrainer & El-Azab,

2015; Millet & Tonks, 2011a) treat voids as a second phase that nucleates in a supersat-

urated matrix (Lifshitz & Slyozov, 1961; Rahaman, 2003). The sharp-interface

description of void growth may thus be considered a generalization of the classical

sharp-interface models of particle growth from a supersaturated matrix, as in solidifica-

tion and precipitation. However, the classical precipitation/solidification models are ex-

amples of phase transitions in non-driven systems, i.e., systems relaxing toward

equilibrium from close thermodynamic states, while the void nucleation and growth is

an example of non-equilibrium phase transition under an external driver, irradiation. It

is the ongoing production of point defects that renders the solid matrix metastable all

the time and causes the nucleation and growth of voids. The lack of sharp-interface

models for void growth under irradiation motivated Hochrainer and El-Azab (2014;

2015) to introduce an elaborate one. Nevertheless, it is useful to first review the clas-

sical models of precipitation since they represent limiting cases of the generalized

sharp- and diffuse-interface models for void growth, before introducing the sharp inter-

face model of voids reported in (El-Azab et al., 2014; Hochrainer & El-Azab, 2015).

The classical sharp-interface models of precipitation consider the interface between

the precipitate and the parent phase to be a singular surface (Lifshitz & Slyozov, 1961;

Rahaman, 2003). Therefore, in addition to the regular balance and constitutive laws for

phases around the interfaces, interfacial balance and constitutive laws are required

(Provatas & Elder, 2010; Pego, 1989; Dai & Du, 2012; Elder et al., 2001; Fife, 1992;

Emmerich, 2008; Garcke et al., 2004; Ahmed et al., 2016; Caginalp, 1989). For a particle

of phase α growing from a supersaturated matrix of phase β by mass diffusion, the iso-

thermal growth kinetics is captured by

∂tck ¼ −∇ � Jk for x∈Ω�; ð2:1Þ

Jk ¼ −Mk∇μk ; μk ¼ ∂ck f for x∈Ω�; ð2:2Þ
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μk
α ¼ μk

β ¼ μk on Γ; ð2:3Þ

v ck½ �βα¼ Jk½ �βα�n on Γ; ð2:4Þ

−λv ¼ γκ þ f½ �βα−
X
k

μk ck½ �βα on Γ: ð2:5Þ

In the above, ck is the fractional concentration of species k, satisfying the conditionX
k

ck ¼ 1, Jk is the flux of the corresponding species, μk is its chemical potential, Mk is

its mobility. f is the Helmholtz free energy density, κ is the interface curvature, and λ is the

interface relaxation constant (λ−1 is the interface kinetic coefficient); it is also sometimes

called the coefficient of kinetic drag (Niethammer, 2000; Dai et al., 2010). The

notation •½ �βα refers to the jump across the interface, Γ, of the quantity in brackets,

and n is the unit normal to the interface, pointing from Ω− to Ω+, which, respect-

ively refer to α and β phases. Eqs. (2.1) and (2.2) represent the mass balance and

constitutive laws for each species in both phases. Eq. (2.3) is a statement of the

continuity of the chemical potential at the interface. Eq. (2.4) and Eq. ((2.5) are the

interfacial balance and constitutive laws, respectively. Eq. (2.4) is also known as the

Stefan jump condition while Eq. ((2.5) is called the dynamical Gibbs-Thompson

equation (Provatas & Elder, 2010; Pego, 1989; Dai & Du, 2012; Elder et al., 2001; Fife,

1992; Emmerich, 2008; Garcke et al., 2004; Ahmed et al., 2016; Caginalp, 1989).

The system of eqs. (2.1)-(2.5) is of course to be supplemented with appropriate initial

conditions and boundary conditions on the outer boundary ∂Ω. For a growing particle

with fixed concentration, the dynamical system becomes one-sided, i.e., diffusion takes

place only in the metastable parent phase.

It is worth noting that the dynamical Gibbs-Thompson relation (Eq. ((2.5)) reduces to

the static (or equilibrium) Gibbs-Thompson relation for a stationary interface. Moreover,

for the case of a flat interface in a binary system, it recovers the common tangent (Max-

well) construction rule. While the dynamical Gibbs-Thompson condition was first intro-

duced in an ad hoc manner based on experimental data (Langer, 1980), it is now known

that it arises as a consequence of the non-negative entropy production expression of the

second law of thermodynamics. Specifically, the dynamical Gibbs-Thompson relation can

be obtained by requiring the bulk and interfacial entropy production to be non-negative

independently and assuming a linear relationship between the normal interface velocity

(the normal fluxes at the interface) and the corresponding driving thermodynamic forces

(El-Azab et al., 2014; Hochrainer & El-Azab, 2015). For the case of infinitely fast interface

kinetics (λ−1→∞, λ→ 0), the velocity term vanishes and we get the classical Gibbs-

Thompson condition as the interfacial constitutive law indicating a diffusion-controlled

growth. In other words, the diffusion-controlled models ignore the interface kinetics and

assume zero interfacial entropy production. When the velocity term is considered, and

hence the interface kinetics is taken into account, the dynamical Gibbs-Thompson rela-

tion states that the chemical potentials and concentrations of each species deviate from

their equilibrium thermodynamic values at the interface.

The classical sharp-interface models of particle growth based on the dynamical sys-

tem (2.1)-((2.5) are often called Stefan or Mullins-Sekerka models (Provatas & Elder,

2010; Caginalp, 1989; Mullins & Sekerka, 1963; Niethammer, 2000; Dai et al., 2010).
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Stefan models are valid for the high supersaturation case and hence describe the

growth stage. Mullins-Sekerka models are valid for the low supersaturation case since

they assume quasistatic diffusion in the bulk phases and are hence more suitable for

describing the coarsening stage. Furthermore, each model is sometimes called classical

or modified (with kinetic drag) depending on whether the classical equilibrium Gibbs-

Thompson condition or the dynamical Gibbs-Thompson condition is considered as the

interfacial constitutive law. A schematic illustration of these different limits is shown in

Table 1. As will be shown below, the limits of the sharp- and diffuse interface models

of void growth under irradiation can be considered as generalizations of these classical

models.

As mentioned previously, the lack of a general sharp-interface model of particle

growth in driven systems has motivated the development of such model for single com-

ponent solids (El-Azab et al., 2014; Hochrainer & El-Azab, 2015). This model serves as

the sharp interface limit of the diffuse interface model for the case of voids. Ignoring

the contribution of surface diffusion to the motion of the void surface, the model is

summarized here. The local balance equations for the point defect concentrations are

∂tcα ¼ Pα−∇ � Jα−Riv: ð3Þ

In the above, cα (α = i, v) denotes the site fraction of interstitials (i) and vacancies (v).

Interstitials are assumed to appear in dumbbell (or split) configuration where two

atoms share a regular lattice site. Hence, a specific lattice site is occupied with a regular

atom, a vacancy, or a dumbbell interstitial such that ca + cv + ci = 1, where ca is the regu-

lar atom site fraction. Therefore, in the fixed lattice frame, only the point defect fluxes

are independent, i.e., the atom diffusion is mediated by the diffusion of point defects. Pα
is production rate of defects due to irradiation. It is proportional to the irradiation dose

rate and is stochastic in space and time. Moreover, it usually has a characteristic spatial

structure (cascade structure), commonly assumed to be a core-shell structure with va-

cancies concentrated in the cascade center and interstitial are distributed at the periph-

ery (Olander, 1976; Was, 2017). Riv is the recombination rate of interstitials and

vacancies, which is proportional to the product of the concentrations of the two react-

ing species as in Eq. (2.1). However, more general forms can be utilized as was dis-

cussed in (El-Azab et al., 2014; Hochrainer & El-Azab, 2015). Jα refers to the diffusive

fluxes of defects,

Jα ¼ −Mα∇μα; ð4Þ

with μα being the coresponding chemical potentials and the mobility Mα being gener-

ally dependent on concetrations. These chemical potentials are obtained as the deriva-

tives of the free energy with respect to the corresponding species concentration. The

Helmholtz free energy density (per lattice site) of the defective lattice is given by

(Hochrainer & El-Azab, 2015)

f ci; ; cvð Þ ¼ f aca þ f ici þ f vcv þ kBT ci lnci þ cv lncv þ ca lnca½ �; ð5Þ

fa is the free energy of an atom in the perfect (defect-free) crystal, fi and fv are the free

energy of formation of interstitials and vacancies, respectively, kB is the Boltzmann con-

stant, and T is the temperature.
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The balance of mass across the void surface combines the Stefan (jump) conditions

for vacancies and interstitials. This gives the surface velocity as follows

v ¼ Ji � n−Jv � n
1þ ci−cv

: ð6Þ

The kinetics of the point defects attachment to the void surface is included as inter-

facial constitutive laws (or boundary conditions). These boundary conditions require

the normal fluxes of point defects at the void surface to be matched to the reaction

rates of point defects with the void surface. Using the transition state theory expres-

sions for the defect-surface reactions, the normal fluxes at the void surface are thus

expressed as

Ji � n ¼ δciνi exp −Δg i=kBTð Þ 1− exp − μi−ΔEð Þ=kBT½ �f g; ð7:1Þ

Jv � n ¼ δcvνv exp −Δgv=kBT
� �

1− exp − μv þ ΔEð Þ=kBT½ �f g; ð7:2Þ

ΔE ¼ f þΩκγ

1þ ci−cv
: ð7:3Þ

Here, δ is the surface layer thickness over which the reaction takes place, which is on

the order of a lattice parameter, cα is the limiting value of the point defect concentra-

tion at the surface, να is the attempt frequency, Δgα is the surface kinetic barrier, f is the

limiting value of the free energy at the surface, and κ is the local surface curvature.

It is clear that the sharp-interface formulation, Eqs. (3) - (7), is a generalization

of the classical particle growth models, Eqs. (2.1)-(2.5), that is suitable for

irradiation-driven void evolution. The canonical form of the surface boundary con-

dition, Eq. (7), derived from transition state theory can be considered as a general-

ized interfacial constitutive law. By expanding the exponential term in Eq. (7) up

to first order by assuming (μα ± ΔE)/kBT < < 1 and using Eq. (6), one recovers the

linear dynamical Gibbs-Thompson relation.

Hochrainer and El-Azab conducted numerical simulations of their model for different

scenarios of void growth and shrinkage (El-Azab et al., 2014; Hochrainer & El-Azab,

2015). They demonstrated that the point defect reaction with the void surface has a

strong effect on the overall kinetics of the problem. In particular, they showed that, as

the surface barrier increases, the rate of void growth diminishes and the deviation of

the point defect concentrations from their equilibrium values increases. This is of

course consistent with a kinetic type interfacial constitutive law (such as Eq. ((2.5) or

Eq. (7)) that accounts for kinetic drag. However, the diffusion-controlled models that

assume local equilibrium at the surface cannot predict such effect. Therefore, the

sharp-interface formulation of the problem of void growth overcomes the limitations of

the rate theory, and hence provides a reference for constructing the corresponding

diffuse-interface models of the problem.

Diffuse-interface description

Phase field (diffuse-interface) models of void growth were introduced (El-Azab et al.,

2014; Hochrainer & El-Azab, 2015; Millet & Tonks, 2011a) with the goal to avoid the

numerical difficulties encountered with sharp interface models. In accordance with the

famous classification of Hohenberg and Halperin for the models of dynamical critical
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phenomena in condensed-matter physics (Hohenberg & Halperin, 1977), existing phase

field models for voids are of type B or type C. In the phase field models of type B, the

point defect concentrations are the only order parameters, and hence the kinetic evolu-

tion equations are given by generalized Cahn-Hilliard equations governing the local

balance of point defect concentrations (Yu & Lu, 2005; Hu et al., 2009; Hu & Henager,

2009; Hu & Henager, 2010; Li et al., 2010; Semenov & Woo, 2012; Li et al., 2013; Xiao

et al., 2013). In the phase field models of type C, an additional non-conserved order

parameter is used to distinguish between voids and matrix (Rokkam et al., 2009; Millett

et al., 2009; Millett et al., 2011c; Millett et al., 2011b). Earlier type B models for void

growth considered vacancies only (Yu & Lu, 2005; Hu & Henager, 2009; Hu & Henager,

2010; Semenov & Woo, 2012; Xiao et al., 2013) but were later generalized to account

for vacancies and interstitials (Hu et al., 2009; Li et al., 2010). In model B, the free en-

ergy of the system is expressed in the form

F ¼
Z

f cv; cið Þ þ ε2

2
∇cvj j2 þ qε2

2
∇ cij j2

� �
d3x: ð8Þ

We do not specify the form of f(cv, ci) but require it to have two global minimizers that

correspond to the two homogeneous phases, namely the void phase in which cv = 1 and

ci = 0 and the solid phase with cv ¼ ceqv and ci ¼ ceqi . ε and q are constants related

to the surface energy and diffuse-interface width. The chemical potentials are obtained

from (8) as

μv ¼
δF
δcv

¼ ∂cv f cv; cið Þ−ε2∇ 2cv
� �

; ð9:1Þ

μi ¼
δF
δci

¼ ∂ci f cv; cið Þ−qε2∇ 2ci
� �

; ð9:2Þ

and the defect fluxes are expressed in terms of the chemical potentials by

Jv ¼ −Mv cv; cið Þ∇μv; ð10:1Þ
Ji ¼ −Mi ci; cvð Þ∇μi: ð10:2Þ

The point defect balance equations are written as follows

∂tcα ¼ Pα−∇ � Jα−Riv: ð11Þ

where α = i, v. As mentioned earlier, for consistency with the sharp-interface descrip-

tion, we require Pα = 0, Mα = 0, and Riv = 0 when cv = 1 and ci = 0. The balance equa-

tions are to be solved in conjunction with the following initial and boundary

conditions,

cv x; 0ð Þ ¼ 1 ; ci x; 0ð Þ ¼ 0 for x∈Ω−; ð12:1Þ
cv x; 0ð Þ ¼ Cv xð Þ ; ci x; 0ð Þ ¼ C i xð Þ for x∈Ωþ; ð12:2Þ
m � Jα ¼ 0; m � ∇cα ¼ 0 for x∈∂Ω: ð12:3Þ

Here we take the void phase to be in Ω−, and consider a zero flux boundary condition

on the outer boundary ∂Ω, which has a unit outward normal m. The results of the

asymptotic analysis presented here also hold for Dirichlet or periodic boundary condi-

tions. We further require Cv(x) and Ci(x) to be outside of the spinodal (unstable)
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regime. This means that Cv(x) and Ci(x) locally satisfy the condition that the Hessian

matrix of the Helmholtz free energy density is positive-definite at any point in the solid

phase. Note that Cv(x) and Ci(x) have also to be compatible with Eq. (12.3).

Model C version presented below is a generalization of phase field model C presented

by Bi and Sekerka (Bi & Sekerka, 1998) that ensures thermodynamic consistency, i.e.,

non-negative entropy production. In the model, the total free energy of the heteroge-

neous system is given by a Ginzburg-Landau (Cahn-Hilliard) functional (Ginzburg &

Landau, 1950; Cahn & Hilliard, 1958) as

F ¼
Z

ωg ηð Þ þ f η; cv; cið Þ þ ε2

2
∇ cvj j2 þ qε2

2
∇cij j2 þ hε2

2
∇ηj j2

� �
d3x: ð13Þ

In the above, η is the non-conserved order parameter such that η = ηM in the solid

matrix and η = ηV in the void. g(η) is a regular double-well potential in the non-

conserved order parameter. f(η, cv, ci) is the generalized Helmholtz free energy density

(per unit volume) with two global minimizers, namely, (ηV, cv = 1, ci = 0) and

ηM; cv ¼ ceqv ; ci ¼ ceqi
� �

representing the void phase and the matrix phase, respectively.

ω, ε, q, and h are constants that determine the surface energy and the diffuse-interface

width. The non-classical (non-local) chemical potentials are the functional derivatives

of the free energy functional with respect to defect concentrations:

μv ¼
δF
δcv

¼ ∂cv f η; cv; cið Þ−ε2∇ 2cv
� �

; ð14:1Þ

μi ¼
δF
δci

¼ ∂ci f η; cv; cið Þ−qε2∇ 2ci
� �

: ð14:2Þ

We also define a generalized driving force that evolves the non-conserved order

parameter as

u ¼ δF
δη

¼ ωdηg ηð Þ þ ∂ηf η; cv; cið Þ−hε2∇ 2η
� �

: ð15Þ

The diffusive fluxes of the point defects are then expressed as

Jv ¼ −Mv η; cv; cið Þ∇μv; ð16:1Þ
Ji ¼ −Mi η; ci; cvð Þ∇μi: ð16:2Þ

The point defect balance and the phase field evolution equations can then be

written as

∂tcα ¼ Pα−∇ � Jα−Riv; ð17:1Þ
∂tη ¼ −Lu: ð17:2Þ

Here, α = i, v and L is the Ginzburg-Landau (Allen-Cahn) mobility (Allen & Cahn,

1979), which is considered to be independent of all order parameters for simplification.

Absorption of defects at sinks can be easily added to this description by assuming

smeared sinks or discrete sinks. Since the kinetic eqs. (17.1) and (17.2) guarantee a re-

duction of the free energy along the evolution path, the free energy functional (Eq.

(13)) is a Lyapunov functional and the two global minimizers (homogeneous phases)

are Lyapunov stable.
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In current phase field models of void growth (El-Azab et al., 2014; Rokkam et al.,

2009; Millett et al., 2009; Millett et al., 2011c; Millett et al., 2011b), and for consistency

with the corresponding sharp-interface description, the term Pα and the parameters Mα

and Riv are required to vanish in the void phase. This is usually accomplished by ex-

pressing them as functions of the order parameters such that the values of these func-

tions are identically zero when the order parameters take on their equilibrium values

that define the void phase. We will show here using the method of matched asymptotic

expansions that this is indeed necessary for the phase field models to recover the de-

sired sharp-interface limit.

Asymptotic limits of phase field models for void growth
Formal asymptotic analysis of phase field models for voids is crucial for proving

thermodynamic and mathematical consistency of the models and for determining their

parameters from sharp-interface counterpart. Several analyses of phase field models of

type B and C for other phenomena exist in literature (Provatas & Elder, 2010; Pego,

1989; Dai & Du, 2012; Elder et al., 2001; Fife, 1992; Emmerich, 2008; Garcke et al.,

2004; Ahmed et al., 2016; Caginalp, 1989). The ones relevant to our situation are those

by Pego (1989), Dai and Du (2012) for the case of model B and Elder et al. (2001) for

the case of model C. Pego (1989) has shown that the Cahn-Hilliard equation with a

constant mobility in a binary system recovers the classical Stefan problem at fast time

scale (growth stage) and the classical Mullins-Sekerka problem at slow time scale

(coarsening stage). Dai and Du (2012) have generalized the analysis to the case of

highly dissimilar mobility in a two-phase system, which is relevant to voids since the

diffusive mobility is zero in the void phase. Our asymptotic analysis for phase field

models B for void growth generalizes their work to driven ternary systems. For the case

of model C, Elder et al. (2001) presented an asymptotic analysis for the low supersatur-

ation case in a non-driven binary system.

We present here an elaborate formal asymptotic analysis of phase field models C for

void growth for both cases of high and low driving forces in driven ternary systems.

For the case of low driving force limits of models B and C, we discuss the connection

between the coarsening limits and the classical diffusion- or interface-controlled

Lifshitz-Slyozov-Wagner theories of Ostwald ripening (Lifshitz & Slyozov, 1961;

Rahaman, 2003; Mullins & Sekerka, 1963; Niethammer, 2000; Dai et al., 2010).

Asymptotic analysis of model B

Model B is summarized in Eqs. (8) through (12). First, all fields are expanded in terms

of the small parameter, ε, appearing in the free energy expression, which is proportional

to the interface width, both in the bulk domains (outer expansion) and in the close

vicinity of the interface (inner expansion). The two expansions are then matched at the

interface in the limit ε→ 0. From the matching, one recovers both the boundary condi-

tions on the front required for solving the field equations in both phases, and the equa-

tion of motion of the interface (void surface). The geometry relevant to this analysis is

shown in Fig. 1. The left part gives a schematic of an irradiated solid with a void en-

semble. Part of a void surface is amplified to the right as a diffuse interface of a finite

thickness that partitions the domain into an inner (diffuse interface) and outer regions.
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Values of the order parameters across the void surface are shown in Ω− (void) and

matrix (Ω+). ∂Ω is the outer boundary and Γ is the sharp void surface.

In the outer region, and for α = i, v, we expand the fields in the form

cα x; tð Þ ¼ c0α x; tð Þ þ εc1α x; tð Þ þ ε2c2α x; tð Þ þ⋯; ð18:1Þ
μα x; tð Þ ¼ μ0α x; tð Þ þ εμ1α x; tð Þ þ ε2μ2α x; tð Þ þ⋯; ð18:2Þ

Mα x; tð Þ ¼ M0
α x; tð Þ þ εM1

α x; tð Þ þ ε2M2
α x; tð Þ þ⋯; ð18:3Þ

Jα x; tð Þ ¼ J0α x; tð Þ þ εJ1α x; tð Þ þ ε2J2α x; tð Þ þ⋯; ð18:4Þ

Pα x; tð Þ ¼ P0
α x; tð Þ þ εP1

α x; tð Þ þ ε2P2
α x; tð Þ þ⋯; ð18:5Þ

Riv x; tð Þ ¼ R0
iv x; tð Þ þ εR1

iv x; tð Þ þ ε2R2
iv x; tð Þ þ⋯: ð18:6Þ

Note that superscripts on ε denote powers while superscripts on the field quantities

such as cα, μα, etc., denote the order in the perturbation expansion. Explicit expressions

of μ0α , J
0
α , etc., can be obtained by expanding Eqs. (9) and (10) in ε and equating terms

of the same order. Moreover, any function of cα must be expanded in Taylor series

around c0α. By doing so, we arrive at

μ0α ¼ ∂cα f c0v ; c
0
i

� �
; ð19:1Þ

μ1α ¼
X
β¼i;v

∂2cβ cα f c0v ; c
0
i

� �
c1β; ð19:2Þ

M0
α ¼ Mα c0v ; c

0
i

� �
; ð19:3Þ

M1
α ¼

X
β¼i;v

∂cβMα c0v; c
0
i

� �
c1β; ð19:4Þ

J0α ¼ M0
α ∇μ0α; ð19:5Þ

J1α ¼ M0
α∇μ1α þM1

α∇μ0α; ð19:6Þ

P0
α ¼ Pα c0v; c

0
i

� �
; ð19:7Þ

P1
α ¼

X
β¼i;v

∂cβPα c0v ; c
0
i

� �
c1β; ð19:8Þ

R0
iv ¼ Riv c0v ; c

0
i

� �
; ð19:9Þ

Fig. 1 A schematic of the diffuse interface and the local coordinate system used in the asymptotic analysis
of model B
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R1
iv ¼

X
β¼i;v

∂cβRiv c0v ; c
0
i

� �
c1β: ð19:10Þ

We only need terms up to first order in our analysis. The different orders of the outer

problem can now be obtained by plugging in the outer expansions in the balance

equations. The leading order (ε0) outer equation is now given by

∂tc0α ¼ P0
α−∇ � J0α−R0

iv for x∈Ω�: ð20Þ

Similar equations hold for the higher order terms. Therefore, one recovers the regular

balance equations in the relevant phases. It is to be noted here that requiring Pα = 0,

Mα = 0, and Riv = 0 when cv = 1 and ci = 0, i.e., in the void phase, makes Eq. (20) trivial.

Boundary conditions on the front necessary for solving these equations will be derived

from the inner expansion.

At the physical interface, we define a local orthogonal coordinate system (r, s), where

r is the normal distance from the point x in Ω to the interface Γ(t), such that r > 0 in

Ω+ and r < 0 in Ω−, and s being the (d-1) coordinates perpendicular to r and tangent to

Γ, where d is the dimensionality of the problem; see Fig. 1. One immediately obtains

n ¼ ∇ r; κ ¼ ∇ � n ¼ ∇ 2r; v ¼ ∂tr: ð21Þ

Here, n is the unit normal to Γ pointing toward Ω+, κ is the mean curvature (sum of

principal curvatures) of Γ, positive when the center of curvature lies within Ω−, and v is

the normal velocity of the interface, positive when the interface moves toward Ω+(for a

growing void). The sign convention here is the opposite of the sharp-interface model of

Hochrainer and El-Azab (2014; 2015). Since the gradients of the fields are much higher

near the interface, we further introduce a stretched variable, z = r/ε. Hence, in the mov-

ing coordinate system (z, s) the spatial and time derivatives transform as follow

∇ 2 ¼ ε−2∂2z þ ε−1κ ∂z þ ∇ 2
s ; ð22:1Þ

∇ � Mα∇μαð Þ ¼ ε−2∂z Mα∂z~μαð Þ þ ε−1Mα κ ∂z~μα þ ∇ s � Mα∇ s~μαð Þ; ð22:2Þ
∂tjx ¼ ∂t−ε−1 v∂z: ð22:3Þ

In the above, ∇s, ∇s⋅ and ∇ 2
s are the (d-1) surface gradient, divergence and Laplacian

operators, respectively.

In the inner region, we expand the fields as (tilde is used to distinguish inner expan-

sion of all fields),

cα x; tð Þ ¼ cα r; s; tð Þ ¼ ~cα z; s; tð Þ ¼ ~c0α z; s; tð Þ þ ε~c1α z; s; tð Þ þ ε2~c2α z; s; tð Þ þ⋯; ð23Þ

with similar expressions for other field quantities as in Eq. (18). The expressions for the

different orders of ~μαare then given by

~μ0
α ¼ ∂~cα f ~c0v ;~c

0
i

� �
−σα ∂2z~c

0
α; ð24:1Þ

~μ1
α ¼

X
β¼i;v

∂~cβ ~c
2
αf ~c0v ;~c

0
i

� �
~c1β−σα κ ∂z~c

0
α−σα ∂

2
z~c

1
α; ð24:2Þ

where σv = 1 and σi = q. Now matching conditions to connect the outer and inner ex-

pansions at the interface must be found. The derivation of such conditions was pre-

sented before (Provatas & Elder, 2010; Pego, 1989; Dai & Du, 2012; Elder et al., 2001;
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Fife, 1992; Emmerich, 2008; Garcke et al., 2004; Ahmed et al., 2016; Caginalp, 1989),

and hence we only summarize the final relations here. Given any relevant field quantity

ϕ, the following matching conditions hold:

~ϕ
0
z ¼ �∞; s; tð Þ ¼ ϕ0 r ¼ �0; s; tð Þ; ð25:1Þ

~ϕ
1
z ¼ �∞; s; tð Þ ¼ ϕ1 r ¼ �0; s; tð Þ þ z∂rϕ0 r ¼ �0; s; tð Þ; ð25:2Þ

~ϕ
2
z ¼ �∞; s; tð Þ ¼ ϕ2 r ¼ �0; s; tð Þ þ z∂rϕ1 r ¼ �0; s; tð Þ

þ 1
2
z2 ∂2rϕ

0 r ¼ �0; s; tð Þ: ð25:3Þ

By the substitution of the relations of Eq. (22) in Eq. (11), the inner equations can

now be written as

ε2∂t~cα−εv ∂z~cα ¼ ε2~Pα þ ∂z ~Mα∂z~μα

� �þ ε ~Mακ ∂z~μα þ ε2∇ s � ~Mα∇ s~μα

� �
−ε2~R iv: ð26Þ

These inner equations must be solved simultaneously. For the leading order (ε0) we

have

0 ¼ ∂z ~M
0
α∂z~μ

0
α

� 	
: ð27Þ

Requiring bounded solutions and taking into account phase change across the interface,

the only possible solution is

~μ0
α ¼ 0: ð28Þ

For α = i, v, Eqs. (28) are the Euler-Lagrange equations that give the equilibrium planar

profiles for the point defect concentrations. Therefore, the interfacial region is in

equilibrium and we have the classical equilibrium thermodynamic conditions on the

front, namely (by using the matching condition Eq. (25.1)),

μ0α �0; s; tð Þ ¼ ~μ0
α �∞; s; tð Þ ¼ 0; ð29:1Þ

c0v −0; s; tð Þ ¼ ~c0v −∞; s; tð Þ ¼ 1; c0i −0; s; tð Þ ¼ ~c0i −∞; s; tð Þ ¼ 0; ð29:2Þ
c0v þ0; s; tð Þ ¼ ~c0v þ∞; s; tð Þ ¼ ceqv ; c0i þ0; s; tð Þ ¼ ~c0i þ∞; s; tð Þ ¼ ceqi : ð29:3Þ

For the next-to-the leading order (ε), we obtain (recall that ~μ0
α ¼ 0)

−v∂z~c0α ¼ ∂z ~M
0
α∂z~μ

1
α

� 	
; ð30Þ

which, by a direct integration, yields

−v ~c0α
� �þ

−¼ ~M
0
α∂z~μ

1
α

h iþ
−
: ð31Þ

By employing the matching conditions Eq. (25.1) and Eq. (25.2) and considering the

flux definition (Eq. (19.5)), we arrive at the Stefan (jump) conditions,

−v c0α
� �þ

−¼ M0
α∂rμ

0
α

� �þ
−¼ J0α � n

� �þ
− : ð32Þ

Now if one requires Mα to be zero when cv = 1 and ci = 0, that is the defect mobility

vanishes in the void phase, Eq. (32) reduces to

−v c0α
� �þ

−¼ J0α � n
� �þ

; ð33Þ
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where J0α � n̂
� �þ

represents the normal flux of the corresponding specie calculated at the

interface from the solid side.

According to Eqs. (19.1), (19.5), (20), (29), (33), phase field model B for void growth

under irradiation reduces to a generalized one-sided classical Stefan problem. Another

limiting case of interest for model B is the one for low driving forces. This limiting case

represents the coarsening behavior of the system when the driving forces have been

exhausted. As shown below, it is in this limit that one recovers a diffusion-controlled

growth equation for the void radius as the one used in the rate theory models (Eq.

(1.2)). To derive this limit, we consider all the driving forces to be of order ε. Specific-

ally, we require

Pα ¼ εP1
α þ ε2P2

α þ⋯; ð34:1Þ
Riv ¼ εR1

iv þ ε2R2
iv þ⋯; ð34:2Þ

cα x; 0ð Þ ¼ ceqα þ εC1
α xð Þ for x∈Ωþ: ð34:3Þ

The last condition states that the initial supersaturation in the solid matrix is of order

ε. The other initial and boundary conditions are the same as in Eq. (12).

In this limit, one should study the evolution of the system on the slow time

scale, t1 = εt. The outer expansions are the same as in Eq. (18), with t replaced by t1. The

relations of Eq. (19) still hold. The outer equations are then given by,

ε∂t1cα ¼ Pα−∇ � Jα−Riv for x∈Ω�: ð35Þ

For the leading order (ε0), we have,

0 ¼ −∇ � J0α for x∈Ω�: ð36Þ

Eq. (36) indicates that the leading order terms in the bulk phases are in steady state.

Strictly speaking, we need boundary conditions on the front to be able to solve Eq.

(36). However, since by construction (recall the initial conditions) we require the bulk

phases to be close to equilibrium, then

μ0α xð Þ ¼ 0 for x∈Ω�; ð37:1Þ
c0v xð Þ ¼ 1; c0i xð Þ ¼ 0 for x∈Ω−; ð37:2Þ
c0v xð Þ ¼ ceqv ; c0i xð Þ ¼ ceqi for x∈Ωþ: ð37:3Þ

We will see from the inner expansion that the leading order terms on the front take on

their equilibrium values, and hence the outer solution is in fact given by Eq. (37).

For the next-to-the-leading order (ε), we have

∂t1c
0
α ¼ P1

α−∇ � J1α−R1
iv ¼ 0 for x∈Ω�; ð38Þ

where J1α is now given by J1α ¼ M0
α∇μ1α since μ0α ¼ 0 (see Eq. (19)). Therefore, the first

order terms in the bulk phases are in steady states. As before, boundary conditions on

the front required for solving Eq. (38) will be deduced from the inner expansion via the

matching conditions. Note that all the terms in Eq. (38) vanish in the void phase by

construction, and hence Eq. (38) is trivially satisfied there. Therefore, the next order in

the outer expansions (ε2) must be considered to determine c1α and μ1α in the void phase.

However, this is not necessary since the front velocity will be determined solely from
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the data in the solid side, similar to the previous limit (see Eq. (33), as will be shown

below.

In the inner region, we expand the fields as in Eq. (23), with t replaced by t1 . The re-

lations of Eq. (24) still hold. The relation in Eq. (22.3) becomes

∂tjx ¼ ε∂t1−v1 ∂z; ð39Þ

where v1 ¼ ∂t1r is the front velocity measured with respect to the slow time scale.

Hence the inner equations can now be written as,

ε3∂t1~cα−ε
2v1∂z~cα ¼ ε2~Pα þ ∂z ~Mα∂z~μα

� �þ ε ~Mακ ∂z~μα þ ε2∇ s

� ~Mα∇ s~μα

� �
−ε2~Riv: ð40Þ

For the leading order (ε0) we get

0 ¼ ∂z ~M
0
α ∂z~μ

0
α

� 	
: ð41Þ

Again, this gives ~μ0
α ¼ 0 for α = i, v as in Eq. (28), and hence we have the same classical

equilibrium conditions on the front as in Eq. (29). Moreover, in the present case this

indicates that equilibrium holds everywhere in the domain to the leading order, i.e.,

μ0α xð Þ ¼ 0 for x∈Ω: ð42Þ

For the next-to-leading order (ε), we obtain (recall that~μ0
α ¼ 0)

0 ¼ ∂z ~M
0
α∂z~μ

1
α

� 	
: ð43Þ

For Eq. (43) to hold everywhere in the interfacial zone, we must have

~μ1
α ¼ Aα s; tð Þ; ð44Þ

where Aα(s, t) is a function that does not depend on z. Note that this indicates that the

chemical potentials are constants in the interfacial region (continuous in the sharp-

interface sense). In order to determine this function, we substitute for ~μ1
α from Eq.

(24.2) in Eq. (44), and then multiply Eq. (44) by ∂z~c0α and integrate in z from −∞ to +∞.
In doing so, we perform integration by parts on some terms taking into account the

fact that ~μ0
α ¼ 0 for α = i, v and ∂z ∂~cα f ~c0v;~c

0
i

� �� � ¼ ∂2~cα f ~c0v ;~c
0
i

� �
∂z~c0α þ ∂~cβ~c

2
αf ~η0;~c0v;~c

0
i

� �
∂z

~c0β for (α, β) = (v, i), (i, v), we arrive at

~μ1
v ~c0v
� �þ

−¼ B s; tð Þ− κγcv
ε

; ~μ1
i ~c0i
� �þ

−¼ −B s; tð Þ− κγci
ε

: ð45Þ

In the above, B s; tð Þ ¼ R
−∞

þ∞
~c1v∂z~c

0
i −~c

1
i ∂z~c

0
v

� �
∂~cv~c

2
i f ~c0v ;~c

0
i

� �
dz , γci ¼

R
−∞

þ∞
qε ∂z~c0i
� �2

dz , and

γcv ¼
R
−∞

þ∞
ε ∂z~c0v
� �2

dz such that the total surface energy is given as γ ¼ γcv þ γci .

Using the matching conditions (25.1) and (25.2) and eliminating B(s, t), Eq. (45)

reduces to the more familiar form

μ1v 1−ceqv
� �

−μ1i c
eq
i ¼ κγ

ε
; ð46Þ

which is the static (equilibrium) Gibbs-Thompson condition. Therefore, at order (ε) in

the inner expansion, one deduces the interfacial constitutive law (boundary condition)

required for solving the outer problem Eq. (38).
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In order to derive a relation for the front velocity, one must consider the next order

(ε2) in the inner expansion. At that order, the inner equations are given by (where we

utilized the fact that ~μ0
α ¼ ∂z~μ1

α ¼ 0)

‐v1∂z~c0α ¼ ∂z ~M
0
α∂z~μ

2
α

� 	
: ð47Þ

By direct integration, we deduce

−v1 ~c0α
� �þ

−¼ ~M
0
α∂z~μ

2
α

h iþ
−
; ð48Þ

which after using the matching conditions (Eq. (25.1) and Eq. (25.2)) becomes

−v1 c0α
� �þ

−¼ M0
α∂rμ

1
α

� �þ
−¼ J1α � n

� �þ
− : ð49Þ

Since by construction Mα = 0 when cv = 1 and ci = 0, Eq. (49) reduces to

−v1 c0α
� �þ

−¼ J1α � n
� �þ

: ð50Þ

The front velocity is thus determined solely from the normal fluxes coming to the

interface from the solid matrix. The analysis so far shows that, for the low driving force

limit that is suitable for describing the coarsening stage, the phase field model B for

void growth under irradiation reduces to a generalized one-sided classical Mullins-

Sekerka problem (Eqs. (38), (46), and (50)).

In model B the interface is always in local equilibrium since the chemical poten-

tials and concentrations at the interface take on their equilibrium thermodynamic

values. This means that the attachment kinetics of point defects to the void surface

is ignored and the void growth process is diffusion-controlled. In addition, the

curvature correction term (Gibbs-Thompson condition) appears only as a first

order correction term (Eq. (46)) and hence the curvature effect is absent from the

leading order terms. While this approximation could be tolerated for large voids

(R > 100 nm), it certainly breaks down for small voids(R < 10 nm). As we will show

later, model C can obviate such shortcomings of model B. Moreover, if one as-

sumes that Mi = ε−1Mv, the contribution of the interstitial to the normal velocity of

the interface will be of order ε, and hence can be ignored as in the phase field

models that consider vacancies only (Yu & Lu, 2005; Hu & Henager, 2009; Hu &

Henager, 2010; Semenov & Woo, 2012; Xiao et al., 2013). This could be a reason-

able approximation at low temperature where the interstitial are highly more mo-

bile than vacancies (interstitial migration energy is usually much smaller than its

vacancy counterpart in most solids), but it does not hold at high temperature.

Now we show how the coarsening limit of model B just discussed reduces to the

famous rate theory approximation. For simplicity, we consider the case where in-

terstitials can be ignored. Moreover, we assume constant vacancy mobility in the

solid matrix which is assumed to be initially supersaturated with a uniform super-

saturation of O(ε) (see Fig. 2). Furthermore, we assume the system is weakly driven

such that the production and reaction terms are of order ε2 or lower. From Eqs.

(38), (46), and (50), we then have

∇ 2μv ¼ 0 for x∈Ωþ; ð51:1Þ
μv ¼ εμ1v ¼ κγ on Γ; ð51:2Þ
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v ¼ εv1 ¼ εJ1v
� �þ � n on Γ: ð51:3Þ

In the above, we took 1−ceqv ≈ 1 . Hence, for weakly driven systems, we recover the

regular Mullins-Sekerka problem as for the case of non-driven systems. For a spherical

void of radius R embedded in an infinite solid matrix, see Fig. 2, Eqs. (51) reduce to:

1
r2

d
dr

r2
dμv
dr


 �
¼ 0; ð52:1Þ

μv r ¼ Rð Þ ¼ 2γ
R
; μv r ¼ ∞ð Þ ¼ d2

cv f
��
ceqv

cv−ceqv
� �

; ð52:2Þ

v ¼ M0
v

dμv
dr


 �
r¼R

: ð52:3Þ

The solution of Eq. (52.1) is simply given by

μv ¼ d2
cv f

��
ceqv

cv−ceqv
� �

−
R
r

d2
cv f

��
ceqv

cv−ceqv
� �

−
2γ
R

� �
r≥Rð Þ: ð53Þ

Eq. (52.2) thus yields

dR
dt

¼ v ¼ M0
v

R
d2
cv f

��
ceqv

cv−ceqv
� �

−
2γ
R

� �
; ð54Þ

which is the well-known growth equation for diffusion-controlled processes (Olander,

1976; Was, 2017; Brailsford & Bullough, 1972; Krishan, 1982; Dubinko et al., 1989;

Lifshitz & Slyozov, 1961; Rahaman, 2003). One can further define a critical radius at

which the void does not grow or shrink (v = 0) by

Rc ¼ 2γ

d2
cv f

��
ceqv

cv−c
eq
vð Þ : ð55Þ

This confirms that in the low driving force limit, model B recovers the rate theory de-

scription or, more precisely, the classical diffusion-controlled particle growth (Olander,

1976; Was, 2017; Brailsford & Bullough, 1972; Krishan, 1982; Dubinko et al., 1989;

Lifshitz & Slyozov, 1961; Rahaman, 2003; Mullins & Sekerka, 1963; Niethammer, 2000;

Fig. 2 A schematic illustration of a spherical void growing in a solid matrix with a uniform low
supersaturation (low driving force limit of model B)
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Dai et al., 2010). Xiao et al. (2013) have recently shown using numerical simulations

that phase field model B predictions agree well with the rate theory predictions.

It is well-known that the classical Mullins-Sekerka problem exhibits kinetic scaling such

that R(t) ∝ t1/3 (Lifshitz & Slyozov, 1961; Rahaman, 2003; Mullins & Sekerka, 1963;

Niethammer, 2000; Dai et al., 2010). Lifshitz and Slyozov were the first to show that a col-

lection of second phase particles follows such cubic growth kinetics (Lifshitz & Slyozov,

1961). The connection between the phase field model B (Cahn-Hilliard equation) and the

diffusion-controlled LSW theory was discussed before by Bray (1994). However, only

weakly driven systems can be considered to behave asymptotically as non-driven systems.

In general, such kinetic scaling laws will not hold for driven systems since the supersatur-

ation is not decaying with time as in non-driven systems.

Asymptotic analysis of model C

Eqs. (13) through (17) summarize the main equations of type C phase field models for

void growth in irradiated solids (Rokkam et al., 2009; Millett et al., 2009; Millett et al.,

2011c; Millett et al., 2011b), where a non-conserved order parameter η is considered to

distinguish the void and matrix phases. We analyze here a generic form in which the

Ginzburg-Landau (Cahn-Hilliard) free energy of the system is given by Eq. (13). Recall

that we only require g(η) to have two global minimizers at ηVand ηM representing the

void and matrix phases, respectively. Similarly, f(η, cv, ci) has two global minimizers that

correspond to the void phase (ηV, cv = 1, and ci = 0) and the solid phase (ηM, cv ¼ ceqv ,

and ci ¼ ceqi ). The chemical potentials, the generalized driving force for the non-

conserved order parameter, and the point defect diffusive fluxes are given by Eq. (14),

Eq. (15), and Eq. (16), respectively. The point defect balance equations and the phase

field evolution equation are given by Eqs. (17). We will use the following scaling for

some of the parameters that appear in the above mentioned equations:

ω←ω−1ε−1; ð56:1Þ

h←h−1ε−1; ð56:2Þ

L←L−1ε−1: ð56:3Þ

The reasoning behind this scaling is as follows. The first scaling ensures that the lead-

ing order terms of the non-conserved order parameters take on their equilibrium

values in the bulk phases regardless of the supersaturation. The second guarantees that

the curvature effect appear at leading order, in contrast to model B where it was a first

order correction. The last relation can be explained if one defines a non-

dimensionalized Peclet number as, pe ¼ av
Dα
, where Dα is the defect diffusivity and a is

the lattice parameter. Hence, Peclet number represents the ratio between the velocity

of points on the surface and the speed of diffusion in the bulk. Clearly, the reaction of

the point defect with the surface is relevant when Peclet number is small; otherwise the

process is diffusion-controlled. In phase field model C, one can define Peclet number

as pe ¼ Lε2
Dα
. Now, if we assume pe =O(ε), we get L =O(ε−1) as in Eq. (56.3). It is worth

noting that if one assumes that pe =O(1) or higher and hence L =O(ε−2) or higher, the

asymptotic limits of model C reduce to their counterparts of model B.

The dynamical system of Eq. (17) becomes
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∂tcα ¼ Pα−∇ � Jα−Riv; ð57:1Þ
ε∂tη ¼ −L−1 u; ð57:2Þ

where α = i, v, with the following initial and boundary conditions (see Fig. 3),

cv x; 0ð Þ ¼ 1; η x; 0ð Þ ¼ ηV; ci x; 0ð Þ ¼ 0 for x∈Ω−; ð58:1Þ
cv x; 0ð Þ ¼ Cv xð Þ; η x; 0ð Þ ¼ ηM; ci x; 0ð Þ ¼ Ci xð Þ for x∈Ωþ; ð58:2Þ
m � Jα ¼ 0; m � ∇cα ¼ 0; m � ∇η ¼ 0 for x∈∂Ω: ð58:3Þ

Again, similar to the case of model B, we require the initial conditions in the solid

matrix to be consistent with the fact that the solid matrix is metastable, i.e., to avoid

the unstable (spinodal) region.

In the outer region we expand the fields as in Eq. (18). Note that u has now to start

at O(ε−1) , i.e., u(x, t) = ε−1u−1(x, t) + u0(x, t) + εu1(x, t)(x, t) +⋯. The analogue of Eq. (19)

is now given by

μ0α ¼ ∂cα f η0; c0v ; c
0
i

� �
; ð59:1Þ

μ1α ¼
X

ρ¼η;ci;cv

∂2cαρf η0; c0v ; c
0
i

� �
ρ1; ð59:2Þ

u−1 ¼ ω−1 dηg η0
� �

; ð59:3Þ

u0 ¼ ω−1 d2
ηg η0
� �

η1 þ ∂ηf η0; c0v; c
0
i

� �
; ð59:4Þ

M0
α ¼ Mα η0; c0v; c

0
i

� �
; ð59:5Þ

M1
α ¼

X
ρ¼η;ci;cv

∂ρMα η0; c0v ; c
0
i

� �
ρ1; ð59:6Þ

P0
α ¼ Pα η0; c0v ; c

0
i

� �
; ð59:7Þ

P1
α ¼

X
ρ¼η;ci;cv

∂ρPα η0; c0v; c
0
i

� �
ρ1; ð59:8Þ

R0
iv ¼ Riv η0; c0v; c

0
i

� �
; ð59:9Þ

Fig. 3 A schematic illustration of the local coordinate system used in the asymptotic analysis of model C
showing values of the order parameters across the void (free) surface
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R1
iv ¼

X
ρ¼η;ci;cv

∂ρRiv η0; c0v ; c
0
i

� �
ρ1: ð59:10Þ

The different orders of the outer problem can be obtained by substituting Eq. (59) in

Eq. (57). For the leading order (ε−1) we have

0 ¼ −L−1 u−1: ð60Þ

For non-zero L−1 , the only possible solution of Eq. (60) that is compatible with the

initial and boundary conditions (Eq. (58) is

η0 xð Þ ¼ ηV for x∈Ω−; η0 xð Þ ¼ ηM for x∈Ωþ: ð61Þ

For the next-to-the leading order (ε0) we have,

∂tc0α ¼ P0
α−∇ � J0α−R0

iv for x∈Ω�; ð62:1Þ

0 ¼ −L−1 u0 for x∈Ω�: ð62:2Þ

From Eq. (62.2), one has u0 = 0. Since away from the interface the gradients of the

non-conserved order parameter should vanish (regardless of the supersaturation in

the point defect concentrations), one must require ∂ηf η0 ¼ ηM; c0v; c
0
i

� � ¼ ∂ηf

η0 ¼ ηV; c0v ; c
0
i

� � ¼ 0, so that η1(x) = 0, for x ∈Ω±. As usual, the boundary conditions

on the front required to solve Eq. (62.1) will be imposed from the matching with

the inner expansion.

In the inner region, we expand the fields as in Eq. (23). We can then find explicit ex-

pressions for the different orders of ~μα and ~u as follows,

~μ0
α ¼ ∂~cα f ~c0v ;~c

0
i

� �
−σα ∂2z~c

0
α; ð63:1Þ

~μ1
α ¼

X
~ρ

¼ ~η;~ci;~cv∂2cαρf η0; c0v; c
0
i

� �
~ρ1‐σα κ ∂z~c0α‐σα ∂

2
z~c

1
α; ð63:2Þ

~u−1 ¼ ω−1 d~ηg ~η0
� �

−h−1∂2z~η
0; ð63:3Þ

~u0 ¼ ω−1 d2
~ηg ~η0
� �

~η1 þ ∂~η f ~η0;~c0v;~c
0
i

� �
‐h−1κ ∂z~η0‐h−1∂2z~η

1: ð63:4Þ

Here σv = 1 and σi = q. Hence the inner equations can now be written as,

ε2∂t~cα−εv∂z~cα ¼ ε2~Pα þ ∂z ~Mα∂z~μα

� �þ ε ~Mακ ∂z~μα þ ε2∇ s

� ~Mα∇ s~μα

� �
−ε2~Riv; ð64:1Þ

ε∂t~η−v∂z~η ¼ −L−1~u: ð64:2Þ

These inner equations must be solved simultaneously. For the leading order (ε−1), we have

0 ¼ −L−1~u−1→ω−1 d~ηg ~η0
� �

−h−1∂2z~η
0 ¼ 0: ð65Þ

This is the Euler-Lagrange equation that gives an equilibrium planar profile

(curvature effect not appearing) for the non-conserved order parameter. There-

fore, we have ~η0 −∞ð Þ ¼ ηV and ~η0 þ∞ð Þ ¼ ηM . For the next-to-the leading order

(ε0), one has
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0 ¼ ∂z ~M
0
α∂z~μ

0
α

� 	
; ð66:1Þ

−v∂z~η0 ¼ −L−1~u0: ð66:2Þ

In contrast to model B, the above coupled equations indicate that the leading order

chemical potential (and hence point defect concentration) profiles in the interfacial

zone are generally not the equilibrium planar profiles but rather are steady-state pro-

files consistent with a specific interface velocity. In order to demonstrate that, we first

note that from Eq. (66.1) we deduce

~μ0
α ¼ Aα s; tð Þ: ð67Þ

Hence the leading order chemical potentials are constant in the interfacial region

(continuous in the sharp-interface sense). We then multiply Eq. (66.2) by ∂z~η0 and

integrate inz from −∞ to +∞, namely,

−v
Z
−∞

þ∞

∂z~η0
� �2

dz ¼ −L−1
Z
−∞

þ∞

∂z~η0 ω−1 d2
~ηg ~η0
� �

~η1 þ ∂~η f ~η0;~c0v ;~c
0
i

� �
‐h−1κ ∂z~η0‐h−1∂2z~η

1
h i

dz:

ð68Þ

Using integration by parts and observing Eq. (65), one can show that
R
−∞

þ∞
∂z~η0

ω−1 d2
~ηg ~η0
� �

~η1‐h−1∂2z~η
1

� 	
dz ¼ 0. Furthermore, to proceed with the integration on the

right hand side, we recall that from the chain rule that we have

∂zf ~η0;~c0v ;~c
0
i

� � ¼ ∂~η f ~η0;~c0v;~c
0
i

� �
∂z~η0 þ ∂~cv f ~η0;~c0v;~c

0
i

� �
∂z~c0v

þ ∂~c i f ~η0;~c0v;~c
0
i

� �
∂z~c0i : ð69Þ

By plugging Eq. (69) into Eq. (68) and taking into account Eq. (67), Eq. (63.1), and the

matching condition Eq. (25.1), we finally arrive at the dynamical Gibbs-Thompson

equation:

v ¼ Lδ f η0; c0v; c
0
i

� �� �þ
− −μ

0
v c0v
� �þ

− −μ
0
i c0i
� �þ

− −κ γη
� 	

: ð70Þ

In the above, γη ¼
R
−∞

þ∞
hε ∂z~η0
� �2

dz is the surface energy and δ = h ε2/γη is the diffuse

interface width that is on the order of a surface layer thickness.

The interfacial balance (Stefan/jump) condition is obtained from the next order. At

order (ε) we have (recall that ∂t~η0 ¼ ∂z~μ0 ¼ 0),

−v∂z~c0α ¼ ∂z ~M
0
α∂z~μ

1
α

� 	
; ð71:1Þ

−v∂z~η1 ¼ −L−1~u1: ð71:2Þ

At this level, it is sufficient to consider only the first equation, i.e., the second equation

gives a higher order correction to the dynamical Gibbs-Thompson condition (Eq. (70)).

Direct integration of Eq. (71.1) gives

−v ~c0α
� �þ

−¼ ~M
0
α∂z~μ

1
α

h iþ
−
; ð72Þ

which after using the matching condition Eq. (25.1) becomes
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−v c0α
� �þ

−¼ M0
α∂rμ

0
α

� �þ
−¼ J0α � n

� �þ
− : ð73Þ

Since according to the dynamical Gibbs-Thompson condition the point defect concen-

trations on the front may deviate from their equilibrium values, the Stefan condition

can be restricted to be one-sided only if we require that Mα = 0 at η = ηV, cv = 1, and

ci = 0. In this case, Eq. (73) immediately reduces to

−v c0α
� �þ

−¼ J0α � n
� �þ

: ð74Þ

According to Eqs. (62), (70), (74), phase field model C for void growth under irradiation

reduces to a generalized one-sided Stefan problem with kinetic drag.

Now we embark on the task of determining the low driving forces limit of model C

as was done before for model B. Again, we assume all the driving forces are of O(ε) as

in Eq. (35). Since the leading orders of the order parameters in the bulk phases are in

equilibrium, using different scaling for the non-conserved order parameter as before is

unnecessary and we only require

ω ¼ 0; ð75:1Þ
L ¼ L−1ε−1: ð75:2Þ

The chemical potentials are then still given by Eq. (14). However, the generalized force

for evolving the non-conserved order parameter (Eq. (15) reduces to

u ¼ δF
δη

¼ ∂ηf η; cv; cið Þ−hε2∇ 2η
� �

: ð76Þ

As before, for such limit one should study the evolution of the system on the slow

time scale, t1 = εt. The dynamical system becomes

ε∂t1cα ¼ Pα−∇ � Jα−Riv; ð77:1Þ
ε2 ∂t1η ¼ −L−1 u: ð77:2Þ

The initial and boundary conditions are the same as in Eq. (58) with the exception that

the supersaturation in the solid matrix is of O(ε), specifically, cα x; 0ð Þ ¼ ceqα þ εC1
α xð Þ

for x ∈Ω+. In the outer region we expand the fields as before. Note that u now starts

normally at O(ε0), i.e., u(x, t) = u0(x, t) + εu1(x, t)(x, t) + ε2u2(x, t) +⋯, with similar

expression for other field quantities. The relations for the different orders of μα(Eq. (59.1)

and Eq. (59.2)) still hold but their counterparts for u are now given by

u0 ¼ ∂ηf η0; c0v ; c
0
i

� �
; ð78:1Þ

u1 ¼ ∂2ηf η0; c0v ; c
0
i

� �
η1 þ ∂2η;cv f η0; c0v ; c

0
i

� �
c1v þ ∂2η;ci f η0; c0v; c

0
i

� �
c1i : ð78:2Þ

For the leading order (ε0) of the outer problem, we have

0 ¼ −∇ � J0α for x∈Ω�; ð79:1Þ
0 ¼ −L−1 u0 for x∈Ω�: ð79:2Þ

For both of the above equations to be satisfied simultaneously and given the initial and

boundary conditions, we conclude that the leading order terms of the order parameters

take on their equilibrium values in the bulk phases, namely,
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u0 xð Þ ¼ 0 ; μ0α xð Þ ¼ 0 for x∈Ω�; ð80:1Þ
η0 xð Þ ¼ ηV ; c0v xð Þ ¼ 1 ; c0i xð Þ ¼ 0 for x∈Ω−; ð80:2Þ
η0 xð Þ ¼ ηM ; c0v xð Þ ¼ ceqv ; c0i xð Þ ¼ ceqi for x∈Ωþ: ð80:3Þ

For the next-to-the-leading order (ε), one has

∂t1c
0
α ¼ P1

α−∇ � J1α−R1
iv ¼ 0 for x∈Ω� ð81:1Þ

0 ¼ −L−1 u1 for x∈Ω� ð81:2Þ

From Eq. (81.2), one has u1 = 0. Again in order to ensure that η1(x) = 0, for x ∈Ω±, we

require (see Eq. (78.2))

∂2ηcα f η0; c0v; c
0
i

� ����
η0¼ηM ;c0v¼ceqv ;c0i ¼ceqi

¼ ∂2ηcα f η0; c0v; c
0
i

� ����
η0¼ηV c0v¼1;c0i ¼0

¼ 0: ð82Þ

For the point defect concentrations, Eq. (81.1) indicates that the first order terms in the

bulk phases are in steady state. We will deduce the boundary conditions on the front

required for solving Eq. (81.1) from the inner expansion via the matching conditions as

before.

We expand the field in the inner region as before. The relations of Eq. (63.1) and Eq.

(63.2) are still applicable. The corresponding relations for ~u are now given by

~u0 ¼ ∂~η f ~η0;~c0v;~c
0
i

� �
−h∂2z~η

0; ð83:1Þ

~u1 ¼ ∂2~η f ~η0;~c0v;~c
0
i

� �
~η1 þ ∂~η~c2v f ~η0;~c0v;~c

0
i

� �
~c1v

þ ∂~η~c2i f ~η0;~c0v ;~c
0
i

� �
~c1i ‐hκ ∂z~η

0‐h∂2z~η
1: ð83:2Þ

The inner equations can now be written as,

ε3∂t1~cα−ε
2v1∂z~cα ¼ ε2~Pα þ ∂z ~Mα∂z~μα

� �þ ε ~Mακ ∂z~μα þ ε2∇ s

� ~Mα∇ s~μα

� �
−ε2~Riv; ð84:1Þ

ε2 ∂t1~η−εv1∂z~η ¼ −L−1~u: ð84:2Þ

Hence, for the leading order (ε0), we have

0 ¼ ∂z ~M
0
α∂z~μ

0
α

� 	
; ð85:1Þ

0 ¼ −L−1~u0: ð85:2Þ

Again, these equation give ~u0 ¼ 0 and ~μ0
α ¼ 0. Therefore, equilibrium holds everywhere

to leading order, specifically,

u0 xð Þ ¼ 0; μ0α xð Þ ¼ 0 for x∈Ω: ð86Þ

For the next-to-the leading order (ε), we obtain (recall that ~μ0
α ¼ 0)

0 ¼ ∂z ~M
0
α∂z~μ

1
α

� 	
; ð87:1Þ

−v1∂z~η0 ¼ −L−1~u1: ð87:2Þ

Again, the above coupled equations indicate that the first order chemical potentials

(and hence point defect concentrations) are in steady-state. Their profiles in the
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interfacial zone are consistent with specific interface velocity as we will show below.

From Eq. (87.1), we deduce

~μ1
α ¼ Aα s; tð Þ: ð88Þ

Here Aα(s, t) is a constant of integration, which is to be determined. According to Eq.

(88), the first order chemical potentials are continuous across the interface. In order to

determine Aα(s, t), we follow the same procedure as with model B, i.e., we multiply Eq.

(88) by ∂z~c0α and integrate in z from −∞ to +∞, we get

~μ1
v ~c0v
� �þ

−¼ Bηv s; tð Þ þ Bvi s; tð Þ− κ γcv
ε

; ~μ1
i ~c0i
� �þ

−¼ Bηi s; tð Þ−Bvi s; tð Þ− κ γci
ε

: ð89Þ

In the above,

Bvi s; tð Þ ¼
Z
−∞

þ∞

~c1i ∂z~c
0
v−~c

1
v∂z~c

0
i

� �
∂~cv~c

2
i f ~η0;~c0v;~c

0
i

� �
dz;

γci ¼
Z
−∞

þ∞

qε ∂z~c0i
� �2

dz;

Bηα s; tð Þ ¼
Z
−∞

þ∞

~η1∂z~c0α−~c
1
α∂z~η

0
� �

∂~η~c2αf ~η0;~c0v ;~c
0
i

� �
dz;

and

γcv ¼
Z
−∞

þ∞

ε ∂z~c0v
� �2

dz:

We apply the same procedure for Eq. (87.2) (in this case, we multiply by ∂z~η0) and we

arrive at

v1 ¼ Lδ −Bηv s; tð Þ−Bηi s; tð Þ− κ γη
ε


 �
: ð90Þ

From Eq. (89) and Eq. (90) and using the matching conditions (25.1) and (25.2), one

can deduce

v1 ¼ Lδ μ1v 1−ceqv
� �

−μ1i c
eq
i −

κ γ

ε

� 	
; ð91Þ

such that the total surface energy is given asγ ¼ γη þ γcv þ γci . (Recall that γη ¼
R
−∞

þ∞
hε

∂z~η0
� �2

dz in Eq. (70)). This is a milder version of the dynamical Gibbs-Thompson con-

dition suitable for low driving forces since it indicates that the deviation from equilib-

rium at the interface is of O(ε) .

The Stefan (jump) conditions will be recovered from the next order in the expansion.

For the next order (ε2), we have (recall that ~μ0 ¼ ∂z~μ1 ¼ 0)

‐v1 ∂z~c0α ¼ ∂z ~M
0
α∂z~μ

2
α

� 	
; ð92:1Þ

v1 ∂z~η0 ¼ L−1~u2: ð92:2Þ

It is sufficient here to consider only the first equation. By direct integration, we

deduce
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−v1 ~c0α
� �þ

−¼ ~M
0
α∂z~μ

2
α

h iþ
−
; ð93Þ

Which, after using the matching conditions (Eq. (25.1) and Eq. (25.3)), becomes

−v1 c0α
� �þ

−¼ M0
α∂rμ

1
α

� �þ
−¼ J1α � n

� �þ
− : ð94Þ

Again, since by construction Mα = 0 at η = ηV, cv = 1, and ci = 0, Eq. (94) reduces to the

one-sided Stefan (jump) condition

−v1 c0α
� �þ

−¼ J1α � n
� �þ

; ð95Þ

Hence in the coarsening stage phase field model C reduces to a generalized version of

the one-sided Mullins-Sekerka problem with kinetic drag (Eqs. (81), (91), and (95)).

This is the first time where a scaling limit of model C is shown to recover the

Mullins-Sekerka model with a kinetic drag. Note that this limit is different from the

one obtained by Elder et al. (2001). In their asymptotic analysis, they obtained a time-

dependent diffusion equation for the first order term of the concentration field in the

bulk phases, i.e., a modified Stefan problem for the first order term. This is however in-

consistent with the assumption of low driving force where one expects the diffusion to

be quasistatic. The reason that they did not arrive at the same limit obtained here is

the fact that they did not study the interface motion at the slow time scale suitable for

the low driving force limit. Our derivations of the asymptotic limits of model C for high

and low driving forces are consistent with and can be viewed as generalizations of their

model B counterparts.

Based on the limits of model C derived above, it is clear that model C is able to in-

corporate the surface attachment kinetics into the overall growth kinetics, as opposed

to model B which can only describe diffusion-controlled growth. Model C accomplishes

this through the extra Allen-Cahn (time-dependent Ginzburg-Landau) equation that

acts as an interfacial constitutive law ensuring positive interfacial entropy production

associated with the interface motion. Hence, it is obvious that the Allen-Cahn mobility

in the diffuse-interface formalism is the counterpart of the interface kinetic coefficient

in the sharp-interface formalism. In particular, from Eq. (70) and (2.5), we have

λ−1 ¼ Lδ: ð96Þ

However, a general nonlinear (canonical) form of the interfacial constitutive law as in

Hochrainer and El-Azab model (Hochrainer & El-Azab, 2015) can only be obtained if

one assumes a similar nonlinear form for the Allen-Cahn equation.

Similar to model B, for the case of low driving forces, one can deduce a compact ex-

pression for the growth of a void of radius R embedded in an infinite solid matrix. We

use the same assumptions made for model B (see Fig. 4). The problem then reduces to

a regular Mullins-Sekerka model with kinetic drag (Mullins & Sekerka, 1963; Nietham-

mer, 2000; Dai et al., 2010); specifically,

1
r2

d
dr

r2
dμv
dr


 �
¼ 0; ð97:1Þ

μv r ¼ Rð Þ ¼ 2γ
R

þ v
Lδ

; μv r ¼ ∞ð Þ ¼ ∂2cv f
��
ηM;ceqv

cv−ceqv
� �

; ð97:2Þ
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v ¼ M0
v

dμv
dr


 �
r¼R

: ð97:3Þ

Note that for the solidification case, the solution of the Mullins-Sekerka model with

kinetic drag was presented before by Niethammer (2000). It is straightforward to show

that the solution of Eq. (97) is

μv ¼ ∂2cv f
��
ηM;ceqv

cv−ceqv
� �

−
RδL

RδLþM0
v

� �
R
r

∂2cv f
��
ηM;ceqv

cv−ceqv
� �

−
2γ
R

� �
r≥Rð Þ; ð98:1Þ

dR
dt

¼ v ¼ Leff
1
R

∂2cv f
��
ηM;ceqv

cv−ceqv
� �

−
2γ
R

� �
; ð98:2Þ

Leff ¼ 1

M0
v

þ 1
RδL

� �−1
¼ RδLM0

v

RδLþM0
v

: ð98:3Þ

In the above, Leff is an effective mobility. Note that, from Eq. (98.1) or from Eq. (97.2)

and Eq. (98.2), the vacancy chemical potential at the interface is given by

μv Rð Þ ¼ 2γ
R

þ M0
v

RδLþM0
v

� �
∂2cv f

��
ηM;ceqv

cv−ceqv
� �

−
2γ
R

� �
: ð99Þ

The difference between the coarsening limits of model B and C, e.g., the regular

Mullins-Sekerka problem and the Mullins-Sekerka with kinetic drag problem is obvi-

ous. By comparing Eq. (98.2) and Eq. (54), we deduce that model C predicts lower

coarsening rates for growing/shrinking voids than model B (since from Eq. (98.3), we

always have Leff < M0
v) . Also from Eq. (99) and Eq. (52.2), the vacancy chemical poten-

tial (and hence concentration) at the void surface obtained from model C is higher than

the value predicted from model B (from the equilibrium Gibbs-Thompson condition)

for a growing void. The situation is reversed for a shrinking void; both limits give of

course the same result for a stationary void. Moreover, according to Eq. (99), for the

case of a growing void the vacancy chemical potential (and hence concentration) at the

void surface increases as the Allen-Cahn mobility decreases (or equivalently, as the

interface kinetic coefficient decreases or the surface barrier increases). All these

Fig. 4 A schematic of a spherical void growing in a solid matrix with a uniform supersaturation for the case of
model C. The order parameter η takes on its equilibrium values ηM and ηV in the matrix and void, respectively
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predictions of model C are in good agreement with the recent simulation results ob-

tained by Hochrainer and El-Azab from their sharp-interface model (El-Azab et al.,

2014; Hochrainer & El-Azab, 2015).

One can also conclude from Eq. (98) and Eq. (99) that the void growth equation ob-

tained from model C is a general growth equation, from which two limiting cases can

immediately be identified. When RδL >> M0
v , we recover the diffusion-controlled

growth given by

v ¼ M0
v

R
∂2cv f

��
ηM;ceqv

cv−ceqv
� �

−
2γ
R

� �
; μv Rð Þ ¼ 2γ

R
: ð100Þ

Therefore, for the diffusion-controlled growth, the interface is in local equilibrium, as

anticipated. On the other hand, when M0
v >> RδL , we recover the attachment-

controlled growth given by

v ¼ Lδ ∂2cv f
��
ηM;ceqv

cv−ceqv
� �

−
2γ
R

� �
; μv Rð Þ ¼ ∂2cv f

��
ηM;ceqv

cv−ceqv
� �

: ð101Þ

Hence, as one should expect, for infinitely fast bulk diffusion kinetics, the va-

cancy chemical potential/concentration at the void surface is the same as in the

bulk.

It is clear from Eq. (98.2) that a transition from interface-controlled kinetics to

diffusion-controlled kinetics may always take place. For a particular material, the

thermodynamic and kinetic parameters are given and the only factor that deter-

mines the prevailing kinetics is the particle radius. For small particles

R << M0
v=Lδ

� �
, interface-controlled kinetics dominates. For large particles

R >> M0
v=Lδ

� �
diffusion-controlled kinetics dominates. Hence, while a small par-

ticle grows, its kinetics changes from interface- to diffusion-controlled. Therefore,

in the mean-field limit a collection of second phase particles in weakly- or non-

driven systems coarsen such that the average particle size follows parabolic growth

(R(t) ∝ t1/2) at short times and cubic growth (R(t) ∝ t1/3) at long times. Such behav-

ior was recently captured by the numerical simulations of Dai et al. (2010). There-

fore, the mean-field limit of the Mullins-Sekerka model with kinetic drag gives rise

to a generalized Lifshitz-Slyozov-Wagner (LSW) theory from which the diffusion-

and interface-controlled theories emerge as limiting cases. Moreover, Kockelkoren

and Chaté reported similar trend from their numerical simulations of the late stage

of coarsening in phase field model C (Kockelkoren & Chaté, 2002). Their results

are then in agreement with our asymptotic analysis presented here. Nevertheless,

as we mentioned before, such kinetic scaling laws are not expected to hold in

driven systems.

Summary and conclusions
The diffuse-interface void growth models of type B and C were analyzed by deriv-

ing their sharp-interface limits. The limits obtained from the asymptotic analyses

are summarized below followed by concluding remarks. A sample simulation is in-

cluded in the Appendix.
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Sharp-interface limits of phase field model B

High driving force limit (growth stage)

In the high driving force limit, suitable for describing the growth stage, all the driving

forces are assumed to be of O(1) and the system evolves on the regular time scale, t =

O(1). In this limit, the phase field model B reduces to a generalized one-sided classical

Stefan problem consisting of:

� Bulk balance laws and constitutive laws:

∂tc0α ¼ P0
α−∇ � J0α−R0

iv for x∈Ω�; ð102:1Þ
J0α ¼ −M0

α∇μ
0
α; M0

α ¼ Mαðc0v ; c0i Þ; μ0α ¼ ∂cα f ðc0v; c0i Þ: ð102:2Þ

� Interfacial balance laws and constitutive laws:

−v c0α
� �þ

−¼ J0α � n
� �þ

on Γ; ð103:1Þ

μ0α ¼ 0 on Γ; ð103:2Þ
c0v þ0; s; tð Þ ¼ ceqv ; c0i þ0; s; tð Þ ¼ ceqi ; ð103:3Þ
c0v −0; s; tð Þ ¼ 1; c0i −0; s; tð Þ ¼ 0: ð103:4Þ

The quantity J0α � n
� �þ

is the normal flux of the defect species at the solid side of the

void surface.

Low driving force limit (coarsening stage)

In the low driving force limit, suitable for describing the coarsening stage, all the driv-

ing forces are assumed to be of O(ε) and the system evolve on the slow time scale, t =

O(ε−1). In this limit, phase field model B reduces to a generalized one-sided classical

Mullins-Sekerka problem. In this limit, the leading order terms of the point defect con-

centrations and chemical potentials take on their equilibrium values and we solve for a

first order correction. The governing equations are:

� Bulk balance laws and constitutive laws:

P1
α−∇ � J1α−R1

iv ¼ 0 for x∈Ωþ; ð104:1Þ
J1α ¼ −M0

α∇μ1α for x∈Ωþ; ð104:2Þ

μ1α ¼ ∂2cα f
��
ceqi ;ceqv

c1α þ ∂2cβ cα f
���
ceqi ;ceqv

c1β for x∈Ωþ; ð104:3Þ

� Interfacial balance laws and constitutive laws:

−v1 c0α
� �þ

−¼ J1α � n
� �þ

on Γ; ð105:1Þ

μ1v 1−ceqv
� �

−μ1i c
eq
i ¼ κγ

ε
on Γ: ð105:2Þ

Again J0α � n
� �þ

is the normal flux of the defect species at the solid side of the void surface.
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Sharp-interface limits of phase field model C

High driving force limit (growth stage)

In the high driving force limit, suitable for describing the growth stage, all the driving

forces are assumed to be of O(1) and the system evolve on the regular time scale t =

O(1). In this limit, phase field model C reduces to a generalized one-sided Stefan prob-

lem with kinetic drag. The governing equations are:

� Bulk balance laws and constitutive laws:

∂tc0α ¼ P0
α−∇ � J0α−R0

iv for x∈Ω�; ð106:1Þ
J0α ¼ −M0

α∇μ
0
α; M0

α ¼ Mαðη0; c0v; c0i Þ; μ0α ¼ ∂cα f ðη0; c0v; c0i Þ; ð106:2Þ

where the leading order terms of the non-conserved order parameters take on their

equilibrium values in the bulk phases, namely,

η0 xð Þ ¼ ηV for x∈Ω−; η0 xð Þ ¼ ηM for x∈Ωþ: ð106:3Þ
� Interfacial balance laws and constitutive laws:

−v c0α
� �þ

−¼ J0α � n
� �þ

on Γ; ð107:1Þ

v ¼ Lδ f η0; c0v; c
0
i

� �� �þ
− −μ

0
v c0v
� �þ

− −μ
0
i c0i
� �þ

− −κ γη
� 	

on Γ: ð107:2Þ

Low driving force limit (coarsening stage)

In the low driving force limit, suitable for describing the coarsening stage, we assume

that all the driving forces are of O(ε) and study the evolution of the system on the slow

time scale, t =O(ε−1). In this limit, phase field model C reduces to a generalized one-

sided Mullins-Sekerka problem with kinetic drag. Hence, the leading order terms of the

point defect concentrations and chemical potentials take on their equilibrium values

and we solve for the first order correction. The governing equations are:

� Bulk balance laws and constitutive laws:

P1
α−∇ � J1α−R1

iv ¼ 0 for x∈Ωþ; ð108:1Þ
η1 xð Þ ¼ 0 for x∈Ωþ; ð108:2Þ
J1α ¼ −M0

α∇μ1α for x∈Ωþ; ð108:3Þ

μ1α ¼ ∂2cα f
��
ηM;ceqi ;ceqv

c1α þ ∂2cβ cα f
���
ηM; ceqi ;ceqv

c1β for x∈Ωþ: ð108:4Þ

� Interfacial balance laws and constitutive laws:

−v1 c0α
� �þ

−¼ J1α � n
� �þ

on Γ; ð109:1Þ

v1 ¼ Lδ μ1v 1−ceqv
� �

−μ1i c
eq
i −

κ γ

ε

� 	
: ð109:2Þ

According to the asymptotic analyses conducted here, a phase field model of type B

recovers the diffusion-controlled growth and coarsening. This model thus ignores the
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surface attachment kinetics. On the other hand, a phase field model of type C is able to

account for the surface attachment kinetics via the extra Allen-Cahn equation, which

ensures non-negative interfacial entropy production associated with the interface mo-

tion. Therefore, for constructing models of voids/bubbles growth and coarsening, phase

field models of type C must be used.

It is obvious that sharp- and diffuse-interface models are able to relax all the as-

sumptions of the rate theory. In particular, they account for the heterogeneity of

the void microstructure and consider the effect of surface attachment of point de-

fects to the void surface on the overall kinetics. One can, however, to some extent

account for the latter in the rate theory models by replacing the diffusion-

controlled growth equation in the rate theory (Eq. (1.2)) by a general growth equa-

tion as Eq. (98.2). One also should replace the equilibrium Gibbs-Thompson condi-

tion (Eq. 1.3), by the dynamical Gibbs-Thompson condition which leads to Eq.

(99). Nevertheless, this is only valid for the low driving force case where the as-

sumption of quasistatic diffusion in the solid matrix is valid.

In passing, we recall here the recommendation by Hochrainer and El-Azab that

a proper treatment of defect attachement to void surfaces, which is rigorously

treated in their development of the sharp interface model for void evolution

(Hochrainer & El-Azab, 2015), must be incorporated into phase field model con-

struction to gurantee an accurate account of defect removal by reactions at the

void surface. In earlier models of type C (El-Azab et al., 2014), such reactions

were treated indirectly by amplifying the vacancy-interstitial recombination term,

Riv, in the diffuse interface region. The form of this term, however, does not im-

pact the results presented here.

While the analysis presented here was tailored for void growth and coarsening, it

can be easily generalized to particle growth and coarsening by mass or/and heat

diffusion in multi-component and multi-phase driven systems. Moreover, thanks to

the varitional formulation of phase field models, one can account for long-range

interactions such as elastic or electrostatic in a systematic fashion, as was done

several times in literature (Provatas & Elder, 2010). The kinetic trends based on

the analysis presented here will not change. One will only have to work with a

generalized chemical potential that account for all the driving forces of short-range

or long-range instead of the usual chemical potential used here. Therefore, our

analysis represents a clear way of constructing diffuse-interface models and dedu-

cing their sharp-interface limits for investigating the growth and coarsening stages

of non-equilibrium phase transitions in a general driven system.

Appendix
Sample void growth simulation

For simplicity and direct comparison with analytical solutions, we ignore intersti-

tials and consider only vacancies. The main goal here is to demonstrate that model

C captures both the diffusion-controlled (DC) and interface-controlled (IC) kinet-

ics. This will be accomplished here by investigating the kinetics of void growth

from a supersaturated matrix.

The simplest free energy of Model C that satisfies the requirements obtained from

the asymptotic analysis has the form,
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F ¼
Z

Ag ηð Þ þ B c−h ηð Þ½ �2 þ 1
2
κ ∇ηj j2

� �
d3r; ðA:1aÞ

g ηð Þ ¼ η2 1−ηð Þ2; h ηð Þ ¼ 3η2−2η3: ðA:1bÞ

Here, c is a normalized vacancy concentration such that it equals 1 in the void and 0 in

the matrix, e.g., c ¼ cv−ceqv
� �

= 1−ceqv
� �

. Therefore, in the void phase, the order parame-

ters take on the values c = 1, η = 1, and in the matrix phase, the order parameters take

on the values c = 0, η = 0. Note that the second term in the free energy functional repre-

sents a parabolic approximation of the thermodynamic free energy of the phases. This

specific form of the free energy functional has the advantage of decoupling the bulk

thermodynamic free energy from the interfacial energy as was shown by Amirouche

and Plapp (2009). Specifically, the interfacial energy and interface width are given by

γ ¼
ffiffiffiffiffiffi
κA

p

3
ffiffiffi
2

p ; ðA:2aÞ

δ ¼
ffiffiffiffiffiffiffiffi
16κ
A

r
: ðA:2bÞ

The parabolic free energy, that approximates the bulk free energy, is parameterized

such that the resulting chemical potential in the matrix equals its counterpart from the

ideal solution free energy (Eq. 5), e.g.,

2Bc ¼ kBT
Ω

ln
cv
ceqv

: ðA:3Þ

The phase field kinetic coefficients are calculated as follows. The Cahn-Hilliard

(chemical) mobility of vacancies is given by

∂2f
∂c2

Mv ¼ Dv; ðA:4aÞ

2BMv ¼ Dv; ðA:4bÞ

where Dv is the vacancy diffusion coefficient. This guarantees that the Cahn-Hilliard

equation recovers Fick’s law in the matrix. The Allen-Cahn mobility can now, thanks to

the asymptotic analysis presented here, be determined as function of the surface kinetic

barrier that appears in the corresponding sharp-interface model (Eq. 7), namely,

∂2f
∂c2

L ¼ υ exp
−Δg
kBT


 �
; ðA:5aÞ

2BL ¼ υ exp
−Δg
kBT


 �
: ðA:5bÞ

This result was obtained from comparing Eq. (91) with a linearized version of Eq. (7).

Now that all the phase field model parameters have been identified in terms of their

sharp-interface parameters, quantitative simulations of void growth in irradiated solids can

be conducted. Here, we chose copper as our material system as in the sharp-interface ana-

lysis presented in (Hochrainer & El-Azab, 2015). The phase field kinetic equations are

solved here using a fully-coupled, fully-implicit scheme implemented in the finite-element
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framework MOOSE. The discretization and integration schemes and the nonlinear solver

options are the same as in the work presented by Ahmed et al. (2017).

In this investigation, we conduct 2D simulations of void growth in supersaturated

copper at 800 K. The formation and migration energies of vacancies in copper are

1 eV and 0.8 eV, respectively (Hochrainer & El-Azab, 2015). The attempt frequency

and atomic volume are taken after (Hochrainer & El-Azab, 2015) as υ = 72300ns−1

and Ω = 0.012 nm3. At 800 K, the equilibrium vacancy concentration is 5 × 10−7and

the vacancy diffusion coefficient is 22.5 × 10−3 nm2/ns. In order to compare the nu-

merical results with the analytical predictions for infinite systems presented above,

a domain size much larger than the initial void radius is used in conjunction with

Dirichlet boundary conditions at the outer boundary. Specifically, we use a square

domain of 512 nm × 512 nm and an initial void radius of 10 nm. A diffuse-interface

width of 2 nm was assumed. The copper matrix is slightly supersaturated with

vacancies, e.g., c = 10−5.

A few simulations were conducted to study the different kinetics of void growth

in copper. The surface kinetic barrier for the vacancies was assumed to be multiple

of their bulk migration energy as in the sharp-interface study (Hochrainer &

El-Azab, 2015). The effect of surface kinetic barrier on the overall kinetics of void

growth is captured in Fig. A1, Fig. A2, Fig. A3. Figure A1 shows snapshots of

diffusion-controlled void growth where the surface kinetic barrier (Δg) was the

same as the bulk migration energy (Em). Figure A2 and Fig. A3 demonstrate quan-

titatively the effect of the surface kinetic barrier on the growth process. As is clear

from Fig. A2, for the case of diffusion-controlled, high gradients of the vacancy

chemical potential are established across the domain with steepest gradients at the

void-matrix interface. The value of the vacancy chemical potential inside the void

and at the interface is set by the void radius and surface energy. On the other

hand, for the case of interface-controlled kinetics (with Δg = 2.1Em), the chemical

potential inside the void and at the surface is almost equal to the chemical poten-

tial in the bulk and hence no gradients develop in this case. All these results are

in good agreement with the analytical predictions of the asymptotic analysis (Eqs.

98-101). Moreover, as evident from Fig. A3, the overall growth rate is strongly

dependent on the value of the surface kinetic barrier. Higher values of the surface

kinetic barrier lead to lower growth rates in agreement with the analytical predic-

tions derived here and the sharp-interface results presented in (Hochrainer &

El-Azab, 2015).

Fig. A.1
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Fig. A.2

Fig. A.3
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