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Abstract
We present a continuummodel of ion-induced surface patterning. The model
incorporates the atomic processes of sputtering, re-deposition and surface diffusion,
and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS)
equation of non-linear dynamics. Linear and non-linear stability analyses of the
evolution equation give estimates of the emerging pattern wavelength and spatial
symmetry. The analytical theory is confirmed by numerical simulations of the evolution
equation with the Fast Fourier Transform method, where we show the influence of the
incident ion angle, flux, and substrate surface temperature. It is shown that large local
geometry variations resulting in quadratic non-linearities in the evolution equation
dominate pattern selection and stability at long time scales.

Introduction
The erosion of surface material by ion sputtering is a fundamental process, which leads
to the formation of surface roughness and patterns at the nanoscale. In some technolog-
ical applications, sputtering erosion can be a significant factor in material degradation,
while in others, nano-patterning by energetic particles can be a useful fabrication tool.
The bombardment of solid surfaces with energetic ions initiates near surface collision
cascades and the ejection of surface atoms. While a fraction of the ejected atoms may
find their way back to be deposited on the surface, the majority travel farther away as
the surface is eroded. The result of such atomistic events is a complex process of rough-
ening, pattern formation, erosion and re-deposition; all of which have the ingredients of
producing pattern-forming instabilities (Makeev et al. 2002).
Experimental evidence shows that ion sputtering can result in the formation of

periodic surface patterns (Costantini et al. 2001; Habenicht 2001; Navez et al. 1962;
Rusponi et al. 1997; Valbusa et al. 2002). The nature of these patterns, including
their wavelength, amplitude, and orientation depends on many factors (e.g. ion energy,
flux, angle of incidence, substrate temperature, and material properties). Consider-
able research has been performed by a number of groups to examine the effects
of these many parameters on the surface features that develop under ion bombard-
ment. The many experimental variables involved in the determination of the pattern
spatial symmetry and periodicity make it imperative to develop a theoretical under-
standing that can guide experimental research. Notable existing theories of ion-induced
patterning have been developed by Sigmund (1973), Bradley and Harper (1988), and
Makeev et al. (2002).
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Among the key observations of ion-induced nano-patterning relate to the effects of the
ion incidence angle, the ion fluence, and the surface temperature. It has been observed
by Navez et al. (1962) that the bombardment of a clean glass surface with an ion beam
produces surface morphology that is dependent on the ion beam incidence angle, θ .
The observed morphology was the formation of ripple structures oriented perpendic-
ular to the ion beam for incidence angles close to normal (θ = 0), and parallel to
the ion beam for incidence angles close to grazing. Habenicht studied the effect of ion
fluence on surface dynamics by exposing a highly ordered pyrolytic graphite (HOPG)
surface with (0001) orientation increasing levels of ion fluence (Habenicht 2001). At
high ion fluence the surface roughness increased as the nanostructures grew in size.
Rusponi et al. (1997) studied the influence of temperature on the surface morphology of
ion-bombarded silver. The results of their work showed that ion bombardment at low
temperatures (160K) resulted in a rough surface, but as the temperature was raised to
290 K and above, a ripple structure began to appear aligned along the < 11̄0 > direc-
tion. The tendency of surface structures to orient along a particular direction is attributed
to the enhanced surface diffusion that occurs at higher temperatures. On the surface of
metals such as Ag(110) and Cu(110), the in-channel direction, < 11̄0 > is an easy path-
way for the diffusion of ad-atoms and vacancies compared with the cross-channel, or
< 001 > direction. Therefore, at higher temperatures where anisotropic surface diffu-
sion is enhanced, the ripple structures have a quicker path to organize in that orientation
(Costantini et al. 2001).
The early ideas of Sigmund provided the basis for Bradley and Harper to develop a

continuum equation for surface evolution, from which the wavelength of the emerg-
ing pattern can be determined. More recently, Makeev et al. provided a comprehensive
extension of the theory, where additional nonlinearities were incorporated as a result
of a more rigorous analysis of the local geometry around the ion impact region. Nev-
ertheless, the general framework remained consistent with earlier developments, with
additional insights on casting the evolution equation into more familiar forms in the
non-linear dynamics literature. In the present work, we extend these theoretical efforts
further in two regards. First, we examine the stability and symmetry of evolving sur-
face patterns with an analytical procedure. Second, we develop numerical solutions
for the evolution of surface patterns that are consistent with the developed analytical
method.
The main objective of the present work is to develop analytical and computational

methods to further the understanding of surface pattern evolution under ion bombard-
ment. We build on previous efforts by Sigmund (1973), Bradley and Harper (1988),
and Makeev et al. (2002). Specifically, we aim at determination of the pattern wave-
length and spatial symmetry at the later stages of surface evolution beyond the linear
regime. Our efforts are confined to the main aspects of ion-induced surface instabilities,
where the effects of surface stress, subsurface point defect generation, surface com-
position, impurities, mass redistribution, hydrodynamic effects, stochastic noise, and
other contributing processes are excluded. We then develop a numerical method to
describe the evolution of surface patterns, where the competition between erosion, re-
deposition, and surface diffusion is considered. We begin by reviewing the framework
used to explain the underlying erosion mechanisms controlling surface morphology, as
well as theoretical attempts to model deposition in “Background theory” section. Stability
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analysis of the governing equations is then explored in “Stability analysis” section, pro-
viding insight into the effects of nonlinearities on surface evolution and expected pattern
formation. The numerical method for simulating surface evolution using an FFT algo-
rithm is then put forward, and the results of the numerical simulations are presented in
“Numerical simulations of pattern evolution” section. The interest here is to compare ana-
lytical theory to numerical simulations in order to reveal the role of nonlinear phenomena
on pattern selection, stability, and long-term evolution. Lastly, a discussion of the numer-
ical results of surface stability is given in “Numerical simulation results” section, and a
summary of conclusions of the study is provided in “Conclusions” section .

Background theory
The continuum theory of surface erosion and stability due to energetic particle sputter-
ing is reasonably well-established, and dates back to the work of Sigmund (1973). Several
authors have added more features to the theory, and applied it to the understanding
of surface nano-patterning and roughening. We will briefly introduce the theory here
for completeness, while references (Makeev et al. 2002) and (Bradley and Harper 1988)
provide more detailed descriptions.
When an obliquely-incident ion bombards the surface, it initiates a collision cascade

downstream, leading to the removal of surface atoms that are energized by the Primary
Knock-on Atom (PKA). Surface atoms that receive enough energy to break their bonds
will be sputtered. If the surface location where the cascade initiates is concave (a local
trough), more surface atoms will be closer to the PKA position than a convex surface, and
thus more material will be removed. This fundamental idea was introduced by Bradley
and Harper (1988), and it obviously leads to surface instabilities, since troughs will con-
tinue to be deeper as disproportionately more atoms are removed. Other phenomena can
lead to modification of this behavior, for example, when surface diffusion is considered,
it results in smoothing out of this geometry-dictated instability, and a periodic struc-
ture is obtained. Additional factors can also be introduced to account for surface stresses
and point defect generation (Lauzeral et al. 1997; Walgraef et al. 1997), as well as higher-
order non-linearities and noise (Makeev et al. 2002). Mass redistribution resulting from
the momentum transfer by incident atoms has also been shown to be an influential factor
in the dynamics of pattern formation (Muñoz-García et al. 2014). The presented study,
however, is constrained to the primary known mechanisms for modeling ion sputter-
ing, including curvature-induced erosion, temperature-induced surface diffusion, and the
effect of nonlinearities and linear damping.
In Sigmund’s theory of sputtering (Sigmund 1969,1973), the average energy deposited

by an ion within the bulk of a material is assumed to be described by a Gaussian distri-
bution, defined by the total energy deposited by the ion. The local surface geometry is
expected to have a significant bearing on local material removal rate in Sigmund’s model.
Non-uniform profiles result in varying erosive effects, depending on the distance of a
surface point from the center of the collision cascade, where an impinging ion releases
its energy distribution. The analytical description of sputtering developed by Sigmund is
important in developing a quantitative model for surface evolution. Using the approxima-
tion for the average energy deposition, Bradley and Harper (1988) showed that the yield
depends on the curvature of the material surface. The following equation expresses the
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erosive velocity relative to the local normal vector of the surface (the Z-axes, see Fig. 1 for
geometry definitions):

vn(ϕ,R) = J
n
Y0(ϕ) [cosϕ − �X(ϕ)a/RX − �Y (ϕ)a/RY ] (1)

where the coefficients �X and �Y are functions of the angle of incidence ϕ, as well as the
collision cascade dimensions, a and β . Here a is the penetration depth of the ion along
its trajectory, and β is the energy distribution width, assuming isotropy in the X and Y
directions (i.e. a spherical distribution) to greatly simplify the terms, as utilized by Valbusa
et al. (2002). Y0(ϕ) represents the sputtering yield, and is defined by the ion energy, angle
of incidence, and collision cascade dimensions. The atomic surface density is n, while the
radii of curvature in the X and Y direction, RX and RY , respectively, are equivalent to the
second derivatives of the local surface height, Z, in each direction.
Next, a transformation must be done between the local (X,Y ,Z) and laboratory coor-

dinates (x, y, h), as shown in Fig. 1, to relate the normal velocity of erosion vn to the
velocity of erosion along the h-axis (Cuerno and Barabási 1995), ∂h

∂t = −vn
√g. Here

g ≡ 1 + (∂xh)2 + (∂yh)2, so that √g is the magnitude of the vector normal to the surface.
The negative sign is needed to reflect the rate at which the hight decreases, as vn is simply
the erosion velocity. The effect of surface diffusion on the rate of change of the surface
height, h, in the lab coordinate system has been analyzed by several authors (Asaro and
Tiller 1972; Mullins 1957; Yang and Srolovitz 1994). It is included in the surface height
evolution equation as:

∂h
∂t

= −vn
√g − K∇4h, (2)

with K = Dsγ�2ρs
kT . Here Ds is the surface diffusivity, γ is the surface free energy, � is the

atomic volume, ρs is the atomic surface density, and k is Boltzmann’s constant, andT is the
substrate temperature. The first term of Eq. (2) may be expanded in an infinite series, and
therefore approximations are needed to successfully model the expression. Bradley and
Harper (BH) approximated the equation by expanding it to first order to produce a linear

Fig. 1 Illustration of the local reference frame (X , Y , Z) relative to the laboratory frame (x, y, h). θ is the angle
between the h-axis and the ion trajectory, and ϕ is the angle between the local normal, Z, and the ion
trajectory



Matthes et al. Materials Theory  (2017) 1:5 Page 5 of 23

differential equation that describes the formation of surface ripples on an ion-bombarded
surface (Bradley and Harper 1988):

∂h
∂t

= −v0(θ) + v′
0(θ)

∂h
∂x

− Ja
n
Y0(θ)

[
�X(θ)

(
∂2h
∂x2

)
+ �Y (θ)

(
∂2h
∂y2

)]
− K∇4h. (3)

This linear BH equation is a useful model for predicting ripple formation and explaining
experimentally observed processes, such as ripple orientation and the flux and ion energy
dependence of the wavelength (Makeev et al. 2002). However, the equation is limited to
small local changes in the surface curvature, where differences between local and global
(lab) frames are small.
Makeev et al. (2002) sought to address these limitations of the BH equation, accounting

for processes such as lateral growth and kinetic roughening. Expansion of the first term
in Eq. (2) that connects local-to-global coordinates was approximated to fourth order to
yield:

∂h
∂t

= − v0 + γ
∂h
∂x

+ ξx

(
∂h
∂x

) (
∂2h
∂x2

)
+ ξy

(
∂h
∂y

) (
∂2h
∂y2

)
+ ν̂x

∂2h
∂x2

+ ν̂y
∂2h
∂y2

+ �1
∂3h
∂x3

+ �2
∂3h

∂x∂y2
− Dxy

∂4h
∂x2∂y2

− Dxx
∂4h
∂x4

− Dyy
∂4h
∂y4

− K∇4h

+ λx
2

(
∂h
∂x

)2
+ λy

2

(
∂h
∂y

)2
+ η(x, y, t), (4)

where the noise η(x, y, t) represents random fluctuations in the evolution, and the coef-
ficients are defined by the collision cascade parameters and angle of ion incidence, as
defined by Makeev et al. (2002). Equation 4 is a nonlinear partial differential equation
that is similar to generic forms in the non-linear dynamics literature. For example, the
Kardar-Parisi-Zhang (KPZ) equation (Edwards andWilkinson 1982; Godrèche 1991) was
used to describe crystal growth by atomic beams at different length scales (Villain 1991).
On the other hand, the Kuramoto-Sivashinsky (KS) equation is a deterministic, nonlinear
equation originally developed to describe chemical turbulence (Kuramoto and Tsuzuki
1976) and laminar flame fronts (Sivashinsky 1977). The KS equation has been shown to
offer a similar analytical description of the surface as the KPZ equation (Makeev et al.
2002). In addition, a damping term may be added to produce the Damped Kuramoto-
Sivashinsky (DKS) equation.

∂h
∂t

= −αh − |ν|∇2h − K∇4h + λ

2
(∇h)2 (5)

The damping term results in smoothing of all spatial frequencies, thereby inhibiting
kinetic roughening (Keller and Facsko 2010). Its presence in the continuum equation
for ion-bombarded surfaces has been used to account for redeposition of sputtered
material (Facsko et al. 2004; Keller and Facsko 2010), although this has been disputed
(Bradley 2011).
At this point, solutions to Eq. (2) have to rely on approximations to the order of

non-linearities resulting from the expansion of √g. Although Eq. (4) was introduced by
Makeev et al., it is an approximation to an infinite series expansion, and contains non-
linearities beyond the original BH equation. Following the theory outlined by the original
BHmodel (Bradley and Harper 1988) and following Makeev et al.’s analysis (Makeev et al.
2002), we further approximate the height evolution equation in a way that is consistent
with elements of the KPZ and KS equation forms. Neglecting non-linearities associated
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with higher order gradients (third and fourth terms in Eq. (4)), and approximating the
expansion to the lowest order nonlinearity, we finally use the form:

∂h
∂t

= −αh − v0 + Fa
2

[
ν̂x

(
∂2h
∂x2

)
+ ν̂y

(
∂2h
∂y2

)]

+ Fa2β
2

[
v̂x

(
∂h
∂x

)2
+ v̂y

(
∂h
∂y

)2
]

− K∇4h (6)

where the coefficients are defined as: ν̂x = 2s2 − c2 − a2βs2c2 ν̂y = −c2, v̂x = 3s2c −
c3 − a2βs2c3, v̂y = −c3, with c = cosϕ and s = sinϕ. In this expression, the following

is defined as F = Jεpa2βe
−a2

β
/2

2(2π)1/2
, where J is the ion flux, ε is the ion energy, and aβ = a/β

characterizes the collision cascade size. Equation (6) is the time evolution equation of
the surface in the laboratory frame. This expression has been simplified for normal ion
incidence (θ = 0), and by assuming an isotropic, or spherical energy distribution for the
collision cascade (i.e. a radius of β).
The damping term depends directly on the surface position, h, rather than its deriva-

tives, indicating that its effect goes beyond the scope of Sigmund’s theory of sput-
tering (Sigmund 1973). The influence of this term on the surface morphology may
be explained as the self-deposition of sputtered material resulting from ion bombard-
ment (Facsko et al. 2004). When patterning is present, a significant amount of material
may be deposited due to line-of-sight interaction of the sputtered material with adjacent
surface features. This effect is more significant in the surface troughs rather than the
peaks, thereby producing a damping effect to the curvature instabilities described in the
Bradley-Harper model (Bradley and Harper 1988).

Stability analysis
Linear stability analysis

Linear stability of the evolution equation is examined by submitting the system to
small perturbations and observing their temporal evolution. For small perturbations, the
nonlinear terms of the governing equationmay be neglected. Performing a Galilean trans-
formation and excluding nonlinear terms, a non dimensionalized form of Eq. (6) may be
written as:

∂ h̄
∂τ

= −ᾱh̄ + ν̂x

(
∂2h̄
∂X2

)
+ ν̂y

(
∂2h̄
∂Y 2

)
− K̄

(
∂4h̄
∂X4 + 2

∂4h̄
∂X2∂Y 2 + ∂4h̄

∂Y 4

)
. (7)

where h̄ = a2β
a h, X = 2aβ

a x, τ = 2Fa2β
a t, ᾱ = a

2Fa2β
α, K̄ = 8a2β

Fa3 K . Performing a Fourier
transform on Eq. (7), it may be written in Fourier space as:

στ h̄ =
[
−ᾱ − ν̂xq2x − ν̂yq2y − K̄

(
q2x + q2y

)2]
h̄. (8)

It has been shown that ν̂x and ν̂y are negative for a wide range of incidence angles
(Bradley and Harper 1988) so that the linear growth rate of perturbations may become
positive inducing the instability of uniform profiles. Effectively, considering the magni-
tude of the coefficients only, and dividing out h̄ leads to the following growth rate for the
amplitude of the spatial mode �q where q2 = q2x + q2y .

στ = −ᾱ + |ν̂x|q2x + |ν̂y|q2y − K̄
(
q2x + q2y

)2
(9)
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For |ν̂x| > |ν̂y|, the maximum growth rate corresponds to a critical wavenumber
defined as q2c = |ν̂x|

2K̄ , allowing us to rewrite the growth rate into the usual expression for
anisotropic systems close to a pattern forming instability:

στ = (−ᾱ + |ν̂x|q2 − K̄q4
) − (|ν̂x| − |ν̂y|

)
q2y (10)

= ε − K̄
(
q2 − q2c

)2 − (|ν̂x| − |ν̂y|
)
q2y (11)

where ε = ν̂2x
4K̄ − ᾱ. For positive values of ε, where ᾱ is less than ν̂2x

4K̄ , spatial modes with

�q = ± qc�1x are unstable, that is �q = ±
√

|ν̂x|
2K̄

�1x.
On varying the beam incidence angle, the difference between |ν̂x| and |ν̂y| varies,

and |ν̂y| may become greater than |ν̂x|. In this case, the maximum linear growth rate

corresponds to the modes with �q = ±
√

ν̂y
2K̄

�1y and instability occurs at ᾱ = ν̂2y
4K̄ .

The patterns developing during the very early stages of the evolution, i.e. when the
nonlinear terms are still negligible, correspond to ripples built on the most unstable wave
vector. According to the values of |ν̂x| and |ν̂y| the selected wavelength is thus:

λi = 2π
qi

= 2π
(
2K̄
|ν̂i|

) 1
2

(12)

The resulting wavelength expression is very parameter sensitive, meaning that the scale
of the selected wavelength will depend significantly on the variables that determine the
diffusive coefficient K̄ and the erosive coefficient ν̂x. Figure 2 illustrates the wavelength
scale at various values of temperature, which is inversely proportional to K̄ , as well as
increasing values of ion flux, J , which is directly proportional to the erosive coefficient.
The ion and material parameters were designed to represent the bombardment of Ar+ on
tungsten. It can be seen that the scale ranges from the nanometer to the millimeter range,
depending on the magnitude of ion flux and temperature. Other parameters, including
ion energy ε, penetration depth a, and the dimensions of the collision cascade will likewise
affect the erosive contribution, while material properties such as the surface diffusivity
and atomic density will affect the diffusive contribution. For the general case where K̄ is

Fig. 2 Dependence of the ripple wavelength on temperature for various incident ion flux J values, from 1019

to 1023 m−2s−1. D0 = 2.4025 × 10−7 m−2, γ=2.9 [J]/[m]2, � = 1.5825 × 10−29 m3, ρs = 7.0811 × 1018

m−2, ε = 300 eV, normal ion incidence. The scale of the resulting wavelength is shown to be greatly affected
by the ion flux J and the temperature
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also anisotropic, the determination of the linearly selected patterns is more complicated,
as shown by Bradley and Harper (1988).
The range of ripple sizes observed in plasma-facing materials has been well docu-

mented. As previously reviewed, nano-ripples were observed on glass substrates early on
by Navez et al. (1962). In addition, ripple formations have been seen to develop on the
insulator rings of Hall thrusters at the mm-scale (De Grys et al. 2010). The latter case
likely involved the influence of stress effects due to plasma bombardment and thermal
conditions. These experimental observations demonstrate the variety of size scales that
may result from plasma exposure as surface features develop.

Weakly nonlinear stability analysis

As time proceeds, nonlinear terms grow and have to be taken into account. According
to the distance from the instability threshold, these terms may saturate the linear growth
of unstable modes and stabilize specific spatial patterns, or may induce spatio-temporal
behavior that is irregular in space and time. To discuss the qualitative aspects of these
regimes, let us consider the damping rate α as a varying parameter with other coefficients
corresponding to anisotropies, diffusion, beam orientation, etc. as fixed.
For θ such that |ν̂x| ≥ |ν̂y| and K̄ > 1. Equation 7 may be written to include the

nonlinear term such that in Fourier transform, it is expressed as a convolution integral.
Equation 7 in then written in Fourier space as:

∂τ h̄(�q) = −
(
ᾱ − |ν̂x|q2x − |ν̂y|q2y + q4K̄

)
h̄(�q) (13)

−
∫

d�k [
v̂x(q − k)xkx + v̂y(q − k)yky

]
h̄(�q − �k)h̄(�k)

=
[
ε − K̄

(
q2 − q2c

)2 − (|ν̂x| − |ν̂y|)q2y
]
h̄(�q)

−
∫

d�k[v̂x(q − k)xkx + v̂y(q − k)yky
]
h̄(�q − �k)h̄(�k)

where q2c = |ν̂x|
2K̄ , ε = ν̂2x

4K̄ − ᾱ. Hence, on decreasing ᾱ below ν̂2x
4K̄ , spatial modes with

�q = ± qc�1x become first unstable, followed by modes different in wavenumber or in
increasing orientation difference with �1x up to ᾱ = ν̂2y

4K̄ , where modes with �q = ± |ν̂x|
2K̄

�1y
become unstable. For ᾱ <

ν̂2y
4K̄ , modes with all orientations become thus unstable, but the

maximum growth rate still corresponds to qc�1x. Finally, for ᾱ = 0, the set of unstable
wave vectors extends to �q = 0, characteristic of the undamped KS equation.
Let us consider first small values of ε

(
ᾱ slightly below ν̂2x

4K̄

)
. In this case, the range of

unstable wave vectors is defined by q2c −
√

ε
K < q2 < q2c +

√
ε
K . For small ε, correspond-

ing to the weakly nonlinear regime, stable modes may be adiabatically eliminated and
amplitude equations may be derived (Ghoniem andWalgraef 2008).

• For example, for critical ripples of uniform amplitude(
h̄ = A1eiqcx + A2ei2qcx + . . . + c.c

)
one obtains:

∂tA1 = εA1 + 4q2c vxA2A∗
1 + . . .

∂tA2 = (
ε − 9Kq4c

)
A2 − q2c vxA1A1 + . . . (14)

and the adiabatic elimination of harmonics leads to

∂tA1 = εA1 − u|A1|2A1 + . . . (15)
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where u = 4q4c v2
Kq4c−ε

	 4v2x
K . Similarly, amplitude equations for spatially varying

amplitude may be obtained within the usual methods of pattern formation theory
(Ghoniem and Walgraef 2008; Walgraef 1997), resulting in the formation of stable
ripples with critical wave vector parallel the x axis and amplitudes |A1| =

√
ε
u ,

|A2| = ε, ...
• The quadratic nonlinearity also couples triplets of modes satisfying the triangular

relation �q1 + �q2 + �q3 = 0 which are able to destabilize one-dimensional patterns and
sustain stable hexagonal ones. For example, the wave vector of critical ripples,
considered as �q1 = qc�1x, is coupled to �q2 = − qc

2
�1x +

√
3
2 qc�1y and

�q3 = − qc
2

�1x −
√
3
2 qc�1y. On writing the profile built on these wave vectors as

h̄ = ∑
n(Anein�q1�r + Bnein�q2�r + Cnein�q3�r + c.c), the corresponding amplitude

equations, for the dominant contributions, have the structure:

Ȧ1 = εA1 + vAB∗C∗ − uA|A1|2A1

Ḃ1 = (ε − �)B1 + vBA∗
1C

∗
1 − uB|B1|2B1

Ċ1 = (ε − �)C1 + vCB∗
1A

∗
1 − uC |C1|2C1 (16)

where � = 3
4q

2
c (|ν̂x| − |ν̂y|), vA = q2c

2 (3v̂y − v̂x), vB = vC = q2c v̂x, uA = 4v̂2x
9K̄ ,

uB = uC = 4
9K̄+4�

(
(v̂x−3v̂y)2

4

)
. Critical ripples correspond to the steady state

|A1|s =
√

ε
uA , B1 = C1 = 0. The linear evolution of perturbations of this state is given

by:

Ḃ1 = (ε − �)B1 + vBA∗
1sC

∗
1

Ċ1 = (ε − �)C1 + vCB∗
1A

∗
1s (17)

and the corresponding linear growth rate is positive for

ε >
v2B
4uA

[
−1 +

√
1 + 4�uA

v2B

]2

= 9K̄q4c
16

[
−1 +

√
1 + 16�

9K̄q4c

]2

= εc (18)

Hence, in large systems, for which the present discussion is valid, when ε < εc,
ripples should be selected, while for ε > εc, steady state solutions of (16),
corresponding to anisotropic hexagonal patterns (also viewed as “dots-on-ripples”
patterns), should develop.

Note that in the two-variable model proposed by Motta et al. (2012,2014), the resulting
set of unstable wave vectors consists of a finite domain around the critical wave vector,
as in the DKS equation, plus a marginal mode with �q = 0. This is a classical problem of
Turing-like instability coupled with a Goldstone mode (Cox and Matthews 2003; Dewel
et al. 1995). The nonlinear couplings between the Goldstone mode and the finite wave-
length unstable modes induce differences in the selection and stability ranges of patterns.
In reference (Motta et al. 2012), a detailed amplitude equation analysis, including the
effect of anisotropy, leads to a similar conclusion also supported by numerical analysis.
The comparison between the outcome of the DKS and the two-variable model would of
course be highly desirable in the analysis of specific experimental situations.
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Beyond the weakly nonlinear regime

By decreasing the damping rate α (increasing ε), the range of unstable wave vectors
increases, which allows more coupling between small and large scales. The weakly non-
linear approximation breaks down and the amplitude equation description is not valid
anymore. Spatio-temporal patterns usually develop and numerical analysis is required to
study them, as we will present in the Numerical simulations of pattern evolution Section.
However, for vanishing damping, our evolution equation becomes a genuine anisotropic
KS equation. While the one-dimensional KS equation has been studied in detail in a
huge number of papers (a few basic references are (Cvitanovíc et al. 2010; Hyman and
Nicolaenko 1986; Hyman et al. 1986; Kevrekidis et al. 1990)), the 2D version, which in the
undamped case has features of the KPZ equation, is much less investigated. In the damped
case, the formation of steady hexagonal patterns, breathing hexagons or more complex
spatio-temporal behavior has been reported (Gomez and Paris 2011; Paniconi and Elder
1997). In the 2D anisotropic case, coarsening ripples may appear in the undamped case
(Rost and Krug 1995), while in the damped case, a numerical study shows competition
between one- and two-dimensional patterns (Vitral 2015).
Let us just recall here very basic aspects of the problemwhich are relevant to the present

investigation.

• One dimension. For values of θ such that |ν̂x| > |ν̂y|, the system is anisotropic and its
behavior may be considered as essentially one-dimensional, where the evolution
equation is:

∂τ h̄ = −|ν̂x|h̄XX −
(
D̂xx + K̄

)
h̄XXXX + v̂x(h̄X)2 (19)

This equation is one of the simplest PDEs, which exhibits spatiotemporal chaotic
behavior. When x ∈[ 0, L], Eq. (19) is equivalent to an infinite set of ODEs:

d
dt

ĥk =
(
|ν̂x|k2 −

(
D̂xx + K̄

)
k4

)
ĥk − v̂x�k′(k − k′)k′ĥk−k′ ĥk′ (20)

with h̄(x, t) = i�kĥk(t) exp(ikx), k = nq, q = 2π
L , n ∈ Z. The zero solution is

unstable versus modes with |k| <
√ |ν̂x|

D̂xx+K̄
= 2π

Lc , or L > Lc (the number of such
modes increases with L). If L is taken as the bifurcation parameter and grows beyond
Lc, the solution passes through a complex hierarchy of bifurcations leading to cellular
multi-modal stationary, oscillatory and chaotic states. A typical behavior includes an
irregular succession of windows with quasi-periodic and chaotic behavior.
In this analysis, it is the boundary condition that determines the wavenumbers which
enter in the unstable domain. In our problem, on varying beam orientation,
temperature (K̄ ) , or damping rate, one may increase or decrease the number of
unstable modes in the system and expect similar results as in the previously
mentioned finite domain case. Following a high T approximation, K̄ dominates and
Dxx may be neglected (Bradley and Harper 1988; Makeev et al. 2002). In the absence
of damping, the domain of unstable wave vectors extends to zero, which rules out an
amplitude equation description, except, perhaps, for the first stages of the evolution,
which is dominated by the fastest growing modes and the ones generated by
nonlinear interactions. The evolution is described by Eq. (19) and the fastest growing
mode corresponds to �q0 =

√
|ν̂x|
2K̄

�1x with a growth rate q40K̄ . It is directly coupled,
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through the quadratic nonlinearity, with 2�q0, 12 �q0. The resulting evolution equations
for these modes are:

d
dt

h̄(�q0, t) = K̄q40h̄(�q0, t) + 4q20v̂xh̄(2�q0, t)h(−�q0, t) − q20
2
v̂xh̄

( �q0
2
, t

)2

d
dt

h̄(2�q0, t) = −8K̄q40h̄(�2q0, t) − q20v̂xh̄(�q0, t)2 + . . .

d
dt

h̄
(±�q0

2
, t

)
= 7

16
K̄q40h̄

(±�q0
2

, t
)

+ q20v̂xh̄(�q0, t)h̄
(

∓�q0
2
, t

)

(21)

h̄(2�q0, t) may be adiabatically eliminated and one obtains:

d
dt

h̄(�q0, t) = K̄q40h̄(�q0, t) − v̂2x
2K̄

h̄(�q0, t)2h(−�q0, t) − q20v̂x
2

h̄
( �q0

2
, t

)2

d
dt

h̄
(±�q0

2
, t

)
= 7

16
K̄q40h̄

(±�q0
2

, t
)

− q20v̂xh̄(�q0, t)h̄
(

∓�q0
2
, t

)

On the fastest time scale, O
(
1/K̄q40

)
, h̄ (�q0, t) saturates to

√
2K̄q20|vx| with h̄

(
±�q0

2

)
= 0.

However this solution is always unstable versus h̄
(
±�q0

2 , t
)
. Effectively, the linear

evolution of small perturbations h̄
(
±�q0

2 , t
)
is given by:

d
dt

h̄
( �q0

2
, t

)
= 7

16
K̄q40h̄

( �q0
2
, t

)
+ √

2K̄q40h̄
(

−�q0
2
, t

)

d
dt

h̄
(

−�q0
2
, t

)
= 7

16
K̄q40h̄

(
−�q0

2
, t

)
+ √

2K̄q40h̄
( �q0

2
, t

)
(22)

Hence, the quadratic coupling between h̄(�q0, t) and h̄
(
±�q0

2 , t
)
enhances the latter’s

growth rate to about 1.85K̄q40. A cellular state with wavelength λ = λ0 = 2π/q0
grows thus first and, after some time, is replaced by another cellular state with
λ = 2λ0. This situation has been studied in more detail by Misbah et al. in (Misbah
and Valance 1994). Similar arguments may be performed for successive subharmonics
and provide a qualitative picture for the first stages of the surface evolution.

• Two dimensions. In this case, the fastest growing mode remains the mode with
�q = �q0 = q0�1x. Besides the quadratic coupling with 2�q0 and 1

2 �q0, h̄(�q0, t) may also be
coupled with h̄(�q1, t) and h̄(�q2, t) where �q0 = q0�1x, �q1 = − 1

2q0�1x +
√
3
2 q0�1y,

�q2 = − 1
2q0�1x −

√
3
2 q0�1y. The coupled evolution of these modes is then:

d
dt

h̄ (�q1, t) = (
K̄q40 − �

)
h̄ (�q1, t) + q20v̂xh̄ (−�q0, t) h̄ (−�q2, t) + . . .

d
dt

h̄ (�q2, t) = (
K̄q40 − �

)
h̄ (�q2, t) + q20v̂xh̄ (−�q0, t) h̄ (−�q1, t) + . . . (23)

where � = 3
4q

2
0(|ν̂x| − |ν̂y|). On the saturation scale of h̄(�q0, t), the maximum growth

rate of h̄(�q1,2, t) is ((
√
2 − 0.5)|ν̂x| + 1.5||ν̂y|) q

2
0
2 .

This growth rate is greater than the effective growth rate of subharmonics(
1.85K̄q40 = 1.85|ν̂x| q

2
0
2

)
for |ν̂x| < 1.6|ν̂y|. Hence, there is a range of incidence angles

around θ = 0 where two-dimensional effects should dominate over subharmonic
ones during the first stages of the evolution. Further analysis requires of course
numerical simulations, as presented in the next section.
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Let us recall that we considered, in this section, systems with large spatial extension,
where boundary effects are irrelevant, and random initial conditions. Boundary effects
in small systems and preexisting initial patterns may force spatial modes into the sys-
tem able to compete with the dynamically selected ones, and affect pattern selection and
evolution. We consider these effects in a separate publication D Walgraef, CSR Matthes,
NM Ghoniem: The influence of surface architecture on ion-induced nano-patterning, in
preparation.

Numerical simulations of pattern evolution
Method development

To simulate surface evolution according to defined parameters, the evolution equation
is solved numerically in Fourier space (D Walgraef: Nano-patterning of surfaces by ion
sputtering. Working comments and thoughts, unpublished). If u(x) is a function sampled
at n discrete points xi ∈ h, 2h, . . . , ih, . . . , 2π − h, 2π and h = 2π/n in real space, then the
Fast Fourier Transform (FFT) is expressed as:

FFT
(
uj

) ≡ ûk where k ∈
(−n

2
+ 1

)
, . . . ,

n
2

(24)

The Fourier transform of derivatives can easily be found subsequently from ûk :
FFT

(
∂νuj
∂xν

)
≡ (ik)ν ûk . To model the directional dependence of the expression, it is

necessary to introduce the indices kx and ky, as the derivatives are applied across both
dimensions.
The nonlinear term of the evolution equation can be written in Fourier space using the

convolution property. It should be noted that the convolution of two vectors in Fourier
space (note the use of the convolution operator [∗]) is equal to the Fourier transform of
their element-wise product in real space. The derivatives are expressed as the product of
ĥ with powers of the index k. Damping can be added by taking into account translational
invariance, achieved by subtracting the average surface height at each time step hA from
the height profile ĥ. Thus,

∂ ĥ
∂t

= − α(ĥ − hA) − Fa
2

(
(ikx)2ĥ + (iky)2ĥ

)
− Fa2β

2

(
v̂x

[
(ikx)ĥ

]
∗

[
(ikx)ĥ

]

+v̂y
[
(iky)ĥ

]
∗

[
(iky)ĥ

])
− K

(
(ikx)4ĥ + (iky)4ĥ + 2(ikx)2(iky)2ĥ

)
. (25)

The nonlinear term requires the solution of the ODE to be performed using a hybrid
implicit/explicit method, in which all terms are written implicitly except the nonlinear
term, which is written explicitly. The result may be calculated in Fourier space for each
time step (n), then converted back to real space. ĥn+1 is the height in Fourier space at time
step n + 1, and �t is the time step increment.

ĥn+1 =

[
ĥn + �tαhA − �t

Fa2β
2

(
v̂x

[
(ikx)ĥn

]
∗

[
(ikx)ĥn

]
+ v̂y

[
(iky)ĥn

]
∗

[
(iky)ĥn

])]

[
1 + �tα + �t

Fa
2

[
(ikx)2 + (iky)2

] + �tK
[
(ikx)4 + (iky)4 + 2(ikx)2(iky)2

]]

(26)

This result may be calculated for all time steps, and converted back to real space. The
operation is performed over many time steps to simulate the evolution of the surface
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profile over a specified span. In the case of linear evolution, the nonlinear term in the
numerator, expressed by the convolution, may be removed.

Convergence and accuracy tests

In this section, we address the accuracy and convergence of the numerical solutions. For
this purpose, the “average” wavelength is used to help quantify the evolution of the sur-
face according to the spectral density, p, of all emergent wavelengths in the spectrum.
Figures 3 and 4 show the results of the evolving ripple morphology using the linear evolu-
tion equation for θ = 30°, and an initial surface of h = A cos(ωx) sin(ωy) where ω = 3.2.
The evolution was carried out according to the parameters defined in Table 1.
The wavelength spectrum can by averaged at each time step in the following way: λave =

�(λi·pi)
�λi

, and is shown over a range of time steps on the left in Figs. 3 and 4 in the x-
and y-direction, respectively. It can be observed that the average wavelength begins at a
value corresponding to the initial surface, and grows to a steady-state value as the surface
morphology changes, representing the final “evolved” wavelength spectrum of the surface.
The behavior of the average wavelength demonstrates the emergence of surface ripples of
a particular wavelength, which cause the average spectral wavelength to grow toward a
converged result as the most unstable wavelength takes over the morphology.
The “dominant” wavelength refers to the single wavelength with the highest spectral

density at any given time. This value is shown on the right side in Figs. 3 and 4, and is
observed to begin at a particular value determined by the initial configuration. In this
case the dominant λ is shown to switch after 9 h of simulated exposure to a value close
to the analytical result, indicated by the horizontal black line. The steady-state value cor-
responding to the wavelength expected by linear stability analysis further indicates an
accurate converged value.
The accuracy of the simulation is dependent on the number of discrete points that the

surface is sampled at, defined by the grid size n, which corresponds to the FFT indices
kx and ky. Figure 5 shows the global error, or the difference between the final converged
wavelength, and the analytical result, for different grid sizes. The global error is computed
over grid sizes that correspond to increasing powers of 2, to optimize speed. It can be
seen that for a sufficiently large grid size, the error reaches a steady value of 1.28×10−6

m in the x-direction, and 1.48×10−6 m in the y-direction. Relative to the scale of the

Fig. 3 Convergence of the averaged wavelength in the x-direction (left) to show changes in the distribution
function over time. The dominant wavelength (right) shows the ripple wavelength that is most present in the
morphology. Black horizontal line indicates analytical result
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Fig. 4 Convergence of the averaged wavelength in the y-direction (left) to show changes in the distribution
function over time. The dominant wavelength (right) shows the ripple wavelength that is most present in the
morphology. Black horizontal line indicates analytical result

surface features, where the dominant wavelength is on the order of 10−4 m, this error is
sufficiently low.

Numerical simulation results
Numerical simulations using the FFT method were performed to provide insight into the
long-term evolution of the surface height, and extend the scope of analytical predictions
described above. The simulations were performed without the presence of damping (i.e.
ᾱ = 0), such that the bifurcation parameter ε, and thus the range of unstable wave vec-
tors is maximized. Under these conditions, surface symmetries according to the linear
evolution equation may not match directly with theory, and pattern formation accord-
ing to weakly nonlinear analysis becomes less predictable. Periodic boundary conditions
have been applied. Spectral analysis was performed on the surface profiles to allow for
a determination of dominant frequencies associated with the ripple wavelengths present
in the developed symmetries. The parameter values used in all of the present numerical
calculations are given in Table 1.

Effects of nonlinearities in the transient regime

The quadratic non-linearity introduced in the surface evolution equations is physically a
result of large local geometric variations, in violation of the small slope approximation of
the original BH approach. Therefore, one expects that as time proceeds, the influence of
higher order non-linearities will become more significant. Our previous analytical results
indicated that couplings between the dominant surface mode and other modes that are

Table 1 Parameters used to define the surface evolution

Parameter Description Quantity Units

J Ion flux 5 × 1021 [m]−2[s]−1

ε Ion energy 300 [eV]

a Ion penetration depth 2 × 10−9 [m]

β Collision cascade dimension 1 × 10−9 [m]

D0 Surface diffusivity 2.4025 × 10−7 [m]−2

γ Surface free energy density 2.9 [J]/[m]−2

� Atomic volume 1.5825 × 10−29 [m]3

ρs Atomic surface density 7.0811 × 1018 [m]−2

T Temperature 500 [K]
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Fig. 5 Global error for various grid sizes in the x-direction (left) and y-direction (right). The error is shown to
converge to a minimum with a grid size of 128

twice and half of the dominant wavelength will appear. Moreover, if the initial surface
is intentionally structured, as previous experimental efforts have done using Chemical
Vapor Deposition (Li et al. 2017; Matthes et al. 2017), it would be interesting to see the
role of non-linearities in pattern selection. A full exploration of the relationship between
the intial surface architecture and dynamically selected pattern is presented in reference
D Walgraef, CSR Matthes, NM Ghoniem: The influence of surface architecture on ion-
induced nano-patterning, in preparation. Here, we consider a case of an initial structured
surface and numerically follow its linear and non-linear evolution.
The observed nonlinear patterning is explained visually in Fig. 6a. The top plot shows

the initial pattern, composed of a series of 4 gaussian “bump” formations. This initial
architecture was selected because it resulted in an increased speed of pattern selection
compared to a randomized initial profile. Using this initial surface geometry, the nonlin-
ear wavelength emerges in the profile after about 30 h, rather than closer to 75 h for a
randomized configuration. At an ion flux of 5 × 1021 m−2s−1, this corresponds to ion

a b

Fig. 6 a Comparison of the initial surface with the final surface profiles under both linear and nonlinear
evolution, with nonlinear term plotted to show the wavelength magnitude. The original surface is a series of
4 gaussian bumps. b Evolution of a gaussian bump surface profile using the linear form of the evolution
equation (top) and nonlinear term included (bottom), showing the influence of the nonlinear term. All units
shown are in [m]
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fluences of 5.4 × 1026 m−2 and 8.1 × 1026 m−2, respectively. The next plot down shows
the periodic pattern of the evolved surface profile, with a wavelength that corresponds
to linear stability analysis of the evolution equation. The plot below the linearly evolved
profile shows the isolated nonlinear term, which clearly has twice the frequency of the
linearly evolved profile. When factored into the evolution equation, the effect nonlinear
term is magnified as it grows, and plays a large part in the evolved surface profile. With
this nonlinear contribution, it can be seen how the patterning of the nonlinear evolu-
tion comes about. Figure 6b shows the 1-dimensional evolution of a particular surface for
both the linear and nonlinear case after 34 h of exposure. It can be seen that the nonlin-
ear plot possesses similar periodicity to the linear plot, but with additional undulations in
the final profile. It should be noted that while the linear profile is steady-state, the non-
linear profile is at a transient point in its morphological evolution (i.e. the final converged
symmetry is not yet reached for the chosen time of the simulation). This point of evo-
lution was selected to observe the combined effect of the linear pattern selection with
the added effect of the nonlinear term prior to it dominating the morphology. At later
times, the nonlinear term takes over, and themorphology is dictated by the corresponding
wavelength alone.
The spectral analysis shown in Fig. 7 corresponds to the evolution shown in Fig. 6. It

can be seen that prior to evolution, the original surface possesses a distinct pattern, which
disappears after 30 h of evolution in both the linear and nonlinear case. Under linear
evolution, it can be seen that a peak exists close to the analytically expected result for
linear stability, denoted by the black vertical line. A notable observation is that the evolved
geometry for the nonlinear case has a dominant wavelength present that is approximately
half the size of the analytical result. There also exists a peak on the nonlinear plot near the
analytical result, indicating the presence of the linear morphology in the final patterning,
as can be observed in the plot from Fig. 7. An intermediate wavelength spectrum is also
displayed, taken after 10 h of exposure, and from this it can be observed that the dominant

Fig. 7 Wavelength spectrum for linear (top) and nonlinear (bottom) evolution cases. The distribution function
of the surface is shown prior to evolution, after 10 h, and after 30 h to demonstrate the changes throughout
evolution. The effect of nonlinearities shows the emergence of a wavelength at later times, which is half the
analytical result according to linear theory. After 10 hours, both evolution regimes show similar results
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wavelength for both linear and nonlinear evolution were identical, close to the analytical
result. This indicates that at earlier time steps, the nonlinear term has little effect, as it
has not grown sufficiently to influence the morphology.

System behavior in 2 dimensions

Figure 8 shows the surface color plots corresponding to the surface height, in m, of a
surface that has a randomized initial height profile (shown as pixels in Fig. 8a), and the
same surface shown after 60 h of simulated exposure at normal ion incidence (θ = 0),
for both linear (Fig. 8b) and nonlinear (Fig. 8c) evolution. Here we assume no effects due
to damping (i.e. α = 0). The red color areas indicate surface peaks, while the blue color
areas correspond to troughs.
It can be observed that when using the linear equation, the evolved surface (Fig. 8b)

demonstrates the emergence of “dots-on-ripples” type patterning, where organized rip-
ples mixed with hexagonal features have been produced. The ripple formation corre-
sponds to previous experimental work on graphite (Habenicht 2001) and glass (Navez
et al. 1962) surfaces, as well as certain metals (Costantini et al. 2001; Valbusa et al. 2002).
The ripples are oriented at an angle relative to the incident ions traveling in the �1x direc-
tion. Because the angle of incidence is set to the surface normal (θ = 0), the curvature
coefficients ν̂x and ν̂y are equal, such that orientational degeneracy is expected. The sim-
ulations displayed this degeneracy in the direction of the emergent ripples (i.e. the x- and
y- components changed between positive and negative with successive simulations), but
both components were shown to be equal in magnitude, as expected analytically. The
wave vectors in the displayed case can be defined as �q1 = qc�1x, �q2 = − qc

2
�1x − qc

2
�1y, and

�q3 = − qc
2

�1x + qc
2

�1y, satisfying the triangular relation �q1 + �q2 + �q3 = 0. The linear result
demonstrates the presence of all three wave vectors, with more dominant critical ripples
corresponding to �q2, having components in both the x- and y-directions. In these sim-
ulations, we are operating in a regime where the damping rate α is set to zero, making
ε a maximum value. Therefore, the evolution of the surface is determined according to
a KPZ equation form. The result shows the emergence of a number of coupled unstable
wave vectors, resulting in the “dots-on-ripples” pattern that has emerged. Successive sim-
ulations showed the orientation of the dominant ripples to vary between �q2 and �q3, as the
randomized initial surface allowed for the competition between wave vectors to vary.

Fig. 8 Height data for the surface profiles of the (a) original surface prior to evolution, and surface after 60 h
of evolution using (b) the linear evolution equation and (c) nonlinear evolution equation. The surface height
is normalized to the maximum height, where average height of the surface is 0. The peaks are shown by the
red regions while the troughs are shown as blue. The x- and y-axes are expressed in [m] to show the feature
size. The evolution parameters are as shown in Table 1. θ = 0°
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The evolution results according to the nonlinear equation (Fig. 8c) show the formation
of striations similar to that of the linear evolution. However, the wavelength scale dif-
fers. It can be seen that the nonlinear evolution produced wavelengths that are noticeably
smaller in size than the linear evolution, replicating the nonlinear behavior demonstrated
in Fig. 6, where the wavelength is half the magnitude as the linear result. The orienta-
tion of the critical ripples, like the linear result, corresponded to the �q2 mode, indicating
the presence of other modes to be less consequential in determining the resulting sym-
metries for the shown simulation. In other simulations with a randomized initial profile,
it was observed that the critical mode varied between �q2 and �q3, indicating a degenerate
solution. The scale of the ripple wavelength appears to be half the magnitude of the wave-
length in the linear case, indicating the emergence of 2�q2 as the dominant wave vector,
which was consistent for all simulations.
Patterning of the surface profile can also be investigated using Fourier spectral analy-

sis, where the distribution function of the various surface modes (wavelengths) can give
direct evidence of the regularity of emerging patterns. Figure 9 shows the wavelength
spectrum of the initial surface profile (red line), shown together with the final surface
profile spectrum (blue line) after 60 h of exposure, in both the linear (top) and nonlinear
(bottom) case. The results are displayed in both the x-direction (Fig. 9a) and y-direction
(Fig. 9b). A vertical black line was added to the plots to show the value of the domi-
nant wavelength obtained from the analytical solutions of the previous section. Both the
x- and y-directions show similar results in that the linear evolution produces a domi-
nant wavelength, shown by the tallest peak, which is consistent with the analytical result.
Alternately, the nonlinear evolution produces a dominant wavelength that appears to be
half the length of the analytically determined pattern. This may be attributed to the trend
explained by Fig. 6, in which the nonlinear term possesses a wavelength twice that of the
linearly stable pattern. The result from this simulation indicates that under evolution over
long timeframes, the nonlinear term dominates the pattern selection. The final behavior
of the distribution function, and the corresponding dominant wavelengths at long times,
is identical to the results for all the 2-dimensional simulations at each respective angle of
ion incidence.

Fig. 9 Distribution function of the wavelengths corresponding to the surface modes present at time t=0
(red) and after 60 h of exposure (blue), for θ = 0°. Note that in case of linear evolution (top), in both the (a)
x-direction (b) y-direction, the dominant wavelength present in the spectrum matches closely with the
analytical prediction according to linear stability analysis (shown by vertical black line). Nonlinear evolution
(bottom) shows a final wavelength that is approximately half the analytical description, indicating the
coupling of 2�q has taken over the symmetry
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Additional simulations were performed at various angles of incidence to observe the
effect of nonlinearities. The results of a simulation performed at θ = 45° are shown
in Fig. 10, before and after 60 h of ion exposure. The linear results are similar to
those at θ = 0, showing the coupled presence of all three wave vectors in the mor-
phology. In the nonlinear case, contrasting surface morphologies can be seen for the
respective angles of incidence. While an incidence angle θ = 0° yielded a clear dom-
inant wavelength, simulations for θ = 45° showed the presence of coupling between
differently oriented wave vectors, producing the dot pattern seen in Fig. 10c. At this
angle, ν̂x = ν̂y, such that the x- and y- components are equal in magnitude. In addi-
tion, there is orientational degeneracy of the dominant wavelength, however the same
type of “dot” and ripple patterning is consistent across all simulations. This result fur-
ther indicates competition between the wave vectors. The patterning in the nonlinear
result for θ = 45° is unique in that the wavelengths controlling the patterns are
again half the magnitude of the linear result. The conclusion that may be drawn for
the nonlinear case is that in all directions, the wave vectors that emerge are twice in
magnitude as in linear evolution. That is, the dominant wave vectors correspond to
2�q1, 2�q2, and 2�q3.
As noted previously, the orientation of the dominant wave vectors is determined by the

relationship of the magnitudes of the second order curvature coefficients ν̂x and ν̂y. This
relationship is shown in Fig. 11, which displays the magnitudes of both terms over a range
of angles of ion incidence, θ . It can be seen that at θ = 0° and θ = 45°, the magnitude of
both values is equal, which explains why for both simulations the x- and y-components of
the ripple wave vectors were equal, and there was orientational degeneracy of the solution.
It can also be seen than the magnitude of ν̂x is greater than ν̂y for all angles of incidence
except between approximately 45° and about 57°.
To observe themorphology under an angle of incidence in which ν̂x and ν̂y are not equal,

simulations were performed on a randomized surface at θ = 50°, where |ν̂x| < |ν̂y|. The
results are shown in Fig. 12. It can be seen in Fig. 12b that the linear result looks similar
to that of other angles of incidence, except that the orientation of the ripples is different
due to the anisotropy of the second order terms. The nonlinear result (Fig. 12c) shows a

Fig. 10 Height data for the surface profiles of the (a) original surface prior to evolution, and surface after 60 h
of evolution using (b) the linear evolution equation and (c) nonlinear evolution equation at θ = 45°. The
surface height is normalized to the maximum height, where the peaks are shown by the red regions while
the troughs are shown as blue. The x- and y-axes are expressed in [m] to show the feature size. The evolution
parameters are as shown in Table 1. Both evolution regimes produce dots-on-ripples patterns, with
contrasting characteristics
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Fig. 11 Comparison of the second order curvature term coefficients magnitudes, |ν̂x| and |ν̂y|. It can be seen
the magnitude of ν̂x is greater than ν̂y for all angles except the range 45◦ < θ <∼ 57°

particularly unique pattern, where the multiples of diagonal wave vectors (i.e. 2�q2, 2�q3)
dominate the morphology and create the diamond patterns that are observed.
Figure 13 shows the convergence behavior of the evolution corresponding to Fig. 8. On

the left is the linear evolution, where the dominant wavelength converges rather quickly,
after 2.25 h. The nonlinear evolution on the right side of the figure shows the solution ini-
tially settles near the analytical solution after 2.25 h, but the final solution converges after
15.75 h, where the dominant wavelength corresponds to half the wavelength of the ana-
lytical solution after the nonlinear term has taken over. Because of the random nature of
the initial surface, the speed of convergence will vary for alternate simulations. Generally,
the solution was found to converge at times under 10 h for the linear case, and 20 h for
the nonlinear evolution. With this simulation, the displayed solution shows no variation
for over 40 h of simulated exposure, indicating convergence.

Conclusions
This study highlights the pattern-forming characteristics of ion-bombarded surfaces
according to a theoretical understanding of the physical processes. The outcomes have

Fig. 12 Height data for the surface profiles of the (a) original surface prior to evolution, and surface after 60 h
of evolution using (b) the linear evolution equation and (c) nonlinear evolution equation at θ = 50°. The
surface height is normalized to the maximum height, where the peaks are shown by the red regions while
the troughs are shown as blue. The x- and y-axes are expressed in [m] to show the feature size. The evolution
parameters are as shown in Table 1
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Fig. 13 Convergence of the dominant wavelength in the x-direction both linear evolution (left) and
nonlinear evolution (right). Black horizontal line indicates analytical result. The nonlinear result shows that
initially the morphology reaches a steady solution near the analytical result, but as time advances the
nonlinear term takes over and the solution converges at this wavelength

been achieved through both an analytical examination of stability, as well as a com-
putational investigation to provide insight where analytical theory is questionable. The
comprehensive stability analysis provides a background for understanding the types of
patterns that occur under various conditions relating to the evolution equation. Linear
stability analysis provides the expected dominant wavelength magnitude of ripple for-
mations, determined by the ion and material parameters. This furnishes a baseline to
which the size of ripples may be compared, in order to track the presence of coupled
modes resulting from the quadratic nonlinearity. The orientation of ripples is shown to
be dependent on the most unstable wave vector. In addition, weakly nonlinear analysis
demonstrated that the coupling of other modes can destabilize one-dimensional stripes in
order to sustain hexagonal patterns. When the damping coefficient is set to zero (ᾱ = 0),
the evolution operates outside the weakly nonlinear regime, such that the range of unsta-
ble wave vectors is maximized. Under such conditions, the evolution proceeds following
the undamped KS equation form, presenting an area that has not been well investigated.
In the undamped regime, the ripple orientation is not easily predicted and depends on the
competition between modes. The selected mode for a particular initial surface configura-
tion is controlled largely by the angle of ion incidence θ , which controls the magnitude of
the coefficients ν̂x and ν̂y.
Computational simulations offer insight into the evolution behavior outside the weakly

nonlinear regime, where the competition between wave vectors is not easily predicted.
Therefore, the resulting patterns are dependent on the initial surface architecture, which
influences the emergence of certainmodes. For the 2-dimensional simulations, a random-
ized surface height profile has been selected in order to observe overall trends associated
with the evolutionary mechanisms, rather than relying on the consistent influence of a
particular surface configuration.
Simulations performed using the linear evolution equation have produced numerical

results that demonstrated the formation of “dots-on-ripples” type patterning. The orien-
tation of these ripples depends on the relationship of the curvature coefficients ν̂x and ν̂y,
where the components of the wave vectors are equal at angles where their magnitudes
match (i.e. θ = 0° and 45°). Performing spectral analysis on the profiles show that themost
dominant wavelength closely matches the analytical calculations for stable ripple forma-
tion. By introducing the nonlinear term to the evolution equation, it has been found that
the effect of the nonlinearities is significant over long time spans, producing sharpened
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or enhanced symmetries. Spectral analysis as well as qualitative results have shown that
at short times, the nonlinear term has little effect on the morphology of the surface pro-
file. After a sufficient number of time steps, however, the nonlinear term grows rapidly
and dominates the evolution equation. The nonlinear influence manifests itself by pro-
ducing surface ripples with a dominant wavelength that is half the magnitude of what
is expected according to linear stability. This result demonstrates the coupling of 2�qc as
the fastest growing growing mode, following the effect of the quadratic nonlinearity. It is
worth mentioning here that the nonlinearities in the evolution equation actually reflect
the large local variations in the surface structure; an aspect that has not been considered
in the original BH theory.
In the nonlinear case, the angle of ion incidence is found to be influential in the selected

pattern formation. While normal incidence only resulted in dots-on-ripples patterning,
θ = 45° resulted in the ripples becoming a clear dot pattern. That is, at θ = 0°, the non-
linear mode oriented along �q2 dominates the coupled modes of other orientations, while
θ = 45° permits strong influence of multiple differently oriented modes. The nonlinear
dots-on-ripples again reveal 2�qc to be the fastest growing mode, which contrasts with the
linear result. The presence of nonlinearities has also been shown to require an extended
speed of convergence compared with linear evolution, as the nonlinear term is initially
not present in the symmetry, but eventually dominates the evolution.

Acknowledgements
This material is based upon work supported by the US Air Force Office of Scientific Research (AFOSR), under award
number FA9550-16-1-0444.

Authors’ contributions
CSRM and NMG prepared the manuscript and conceived the study. DW lead the nonlinear stability analysis and CSRM
formulated the numerical simulations. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 March 2017 Accepted: 9 May 2017

References
MA Makeev, R Cuerno, A-L Barabasi, Morphology of ion-sputtered surfaces. Nucl. Inst. Methods Phys. Res. Sect. B:

Beam Interactions Mater. Atoms. 197(3), 185–227 (2002)
G Costantini, S Rusponi, FB de Mongeot, C Boragno, U Valbusa, Periodic structures induced by normal-incidence

sputtering on ag (110) and ag (001): flux and temperature dependence. J. Phys. Condens. Matter. 13(26), 5875 (2001)
S Habenicht, Morphology of graphite surfaces after ion-beam erosion. Phys. Rev. B. 63(12), 125419 (2001)
M Navez, C Sella, D Chaperot, Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.

Czetch Repub. Acad. Sci. 254, 240 (1962)
S Rusponi, C Boragno, U Valbusa, Ripple structure on ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78(14),

2795 (1997)
U Valbusa, C Boragno, FB de Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys. Condens. Matter. 14(35), 8153

(2002)
P Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8(11), 1545–1553 (1973)
RM Bradley, JME Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A. Vac. Surf.

Films. 6(4), 2390–2395 (1988)
D Walgraef, NM Ghoniem, J Lauzeral, Deformation patterns in thin films under uniform laser irradiation. Phys. Rev. B.

56(23), 15361 (1997)
J Lauzeral, D Walgraef, NM Ghoniem, Rose deformation patterns in thin films irradiated by focused laser beams. Phys. Rev.

Lett. 79(14), 2706 (1997)
J Muñoz-García, L Vazquez, M Castro, R Gago, A Redondo-Cubero, A Moreno-Barrado, R Cuerno, Self-organized

nanopatterning of silicon surfaces by ion beam sputtering. Mater. Sci. Eng. R: Rep. 86(1–44) (2014)
P Sigmund, Theory of sputtering. i. sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184(2), 383 (1969)
R Cuerno, A-L Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74(23), 4746 (1995)



Matthes et al. Materials Theory  (2017) 1:5 Page 23 of 23

WWMullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)
RJ Asaro, WA Tiller, Interface morphology development during stress corrosion cracking: Part i.via surface diffusion.

Metall. Trans. 3(7), 1789–1796 (1972)
WH Yang, DJ Srolovitz, Surface morphology evolution in stressed solids: surface diffusion controlled crack initiation.

J. Mech. Phys. Solids. 42(10), 1551–1574 (1994)
C Godrèche, Solids far from Equilibrium, volume 1. (Cambridge University Press, Cambridge, 1991)
SF Edwards, DR Wilkinson, The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.

381(1780), 17–31 (1982)
J Villain, Continuummodels of crystal growth from atomic beams with and without desorption. J. Phys. I. 1(1), 19–42

(1991)
Y Kuramoto, T Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium.

Prog. Theor. Phys. 55(2), 356–369 (1976)
GI Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames: Derivation of basic equations. Acta

Astronaut. 4(11), 1177–1206 (1977)
A Keller, S Facsko, Ion-induced nanoscale ripple patterns on si surfaces: theory and experiment. Materials. 3(10),

4811–4841 (2010)
S Facsko, T Bobek, A Stahl, H Kurz, T Dekorsy, Dissipative continuummodel for self-organized pattern formation during

ion-beam erosion. Phys. Rev. B. 69(15), 153412 (2004)
RM Bradley, Redeposition of sputtered material is a nonlinear effect. Phys. Rev. B. 83(7), 075404 (2011)
KH De Grys, A Mathers, B Welander, V Khayms, Demonstration of 10,400 hours of operation on 4.5 kw qualification model

hall thruster. AIAA Pap, 6698 (2010)
N Ghoniem, D Walgraef, Instabilities and Self-organization in Materials. (Oxford Univ. Press, Oxford, 2008)
D Walgraef, Spatio-Temporal Pattern Formation: with Examples from Physics, Chemistry, andMaterials Science. (Springer

Verlag, Berlin, 1997)
FC Motta, PD Shipman, RM Bradley, Highly ordered nanoscale surface ripples produced by ion bombardment of binary

compounds. J. Phys. D. Appl. Phys. 45(12), 122001 (2012)
FC Motta, PD Shipman, RM Bradley, Theory of nanoscale pattern formation produced by oblique-incidence ion

bombardment of binary compounds. Phys. Rev. B. 90(8), 085428 (2014)
G Dewel, S Métens, M’F Hilali, P Borckmans, CB Price, Resonant patterns through coupling with a zero mode. Phys. Rev.

Lett. 74, 4647 (1995)
SM Cox, PC Matthews, Instability and localisation of patterns due to a conserved quantity. Phys. D. 175, 196–219 (2003)
JM Hyman, B Nicolaenko, The Kuramoto-Sivashinsky equation: A bridge between pdes and dynamical systems. Phys. D.

18, 113–126 (1986)
JM Hyman, B Nicolaenko, S Zaleski, Order and complexity in the kuramoto-sivashinsky model of weakly turbulent

interfaces. Phys. D. 23, 265–292 (1986)
IG Kevrekidis, B Nicolaenko, JC Scovel, Back in the saddle again: A computer assisted study of the kuramoto-sivashinsky

equation. SIAM J. Appl. Math. 50, 760–790 (1990)
P Cvitanovíc, RL Davidchack, E Siminos, On the state space geometry of the kuramotosivashinsky flow in a periodic

domain. SIAM J. Appl. Dyn. Syst. 9(1), 1–33 (2010)
M Paniconi, KR Elder, Stationary, dynamical, and chaotic states of the two-dimensional damped kuramoto-sivashinsky

equation. Phys. Rev. E. 56(3), 2713–2721 (1997)
H Gomez, J Paris, Numerical simulation of asymptotic states of the damped kuramoto-sivashinsky equation. Phys. Rev. E.

83(4), 046702 (2011)
M Rost, J Krug, Anisotropic kuramoto-sivashinsky equation for surface growth and erosion. Phys. Rev. Lett. 75, 3894–3898

(1995)
E Vitral, Nano-patterning of surfaces by ion sputtering: Numerical study of the anisotropic damped kuramoto-sivashinsky

equation. Master’s thesis, Universidade do Estado do Rio de Janeiro, (2015)
C Misbah, A Valance, Secondary instabilities in the stabilized kuramoto-sivashinsky equation. Phys. Rev. E. 49(1), 166–183

(1994)
CSR Matthes, NM Ghoniem, GZ Li, TS Matlock, DM Goebel, CA Dodson, RE Wirz, Fluence-dependent sputtering yield of

micro-architectured materials. Appl. Surf. Sci. 407C, 223–235 (2017)
GZ Li, TS Matlock, DM Goebel, RE Wirz, CSR Matthes, NM Ghoniem, in In situ plasma sputtering and angular distribution

measurements for structuredmolybdenum surfaces. Plasma Sources Science and Technology 26. vol. 6, (2017), p. 065002


	Abstract
	Introduction
	Background theory
	Stability analysis
	Linear stability analysis
	Weakly nonlinear stability analysis
	Beyond the weakly nonlinear regime

	Numerical simulations of pattern evolution
	Method development
	Convergence and accuracy tests

	Numerical simulation results
	Effects of nonlinearities in the transient regime
	System behavior in 2 dimensions

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

